Respuesta :

Step-by-step explanation:

lateral surface area here = πrl

r = 10

l = √h²+r²= √ 24²+ 10² = 26

lateral surface area = 10 × 26 × π

= 260π in²

hope this will be helpful to you .

plz mark my answer as brainlist if you find it useful.

Answer:

The lateral area of cone is 260π in².

Step-by-step explanation:

Given :

  • [tex]\small\blue\bull[/tex] Height of cone = 24 in.
  • [tex]\small\blue\bull[/tex] Radius of cone = 10 in.

[tex]\begin{gathered}\end{gathered}[/tex]

To Find :

  • [tex]\small\blue\bull[/tex] Slant height of cone
  • [tex]\small\blue\bull[/tex] Lateral surface area of cone

[tex]\begin{gathered}\end{gathered}[/tex]

Using Formulas :

[tex]\star{\underline{\boxed{\sf{\purple{\ell = \sqrt{{(r)}^{2} + {(h)}^{2}}}}}}}[/tex]

  • [tex]\pink\star[/tex] l = slant height
  • [tex]\pink\star[/tex] r = radius
  • [tex]\pink\star[/tex] h = height

[tex]\star{\underline{\boxed{\sf{\purple{La_{(Cone)}= \pi r\ell}}}}}[/tex]

  • [tex]\pink\star[/tex] La = Lateral area
  • [tex]\pink\star[/tex] π = 3.14
  • [tex]\pink\star[/tex] r = radius
  • [tex]\pink\star[/tex] l = slant height

[tex]\begin{gathered}\end{gathered}[/tex]

Solution :

Finding the slant height of cone by substituting the values in the formula :

[tex]\begin{gathered} \qquad{\longrightarrow{\sf{\ell = \sqrt{{(r)}^{2} + {(h)}^{2}}}}}\\\\\qquad{\longrightarrow{\sf{\ell = \sqrt{{(10)}^{2} + {(24)}^{2}}}}}\\\\\qquad{\longrightarrow{\sf{\ell = \sqrt{{(10 \times 10)} + {(24 \times 24)}}}}}\\\\\quad{\longrightarrow{\sf{\ell = \sqrt{(100)+(576)}}}}\\\\\qquad{\longrightarrow{\sf{\ell = \sqrt{100 + 576}}}}\\\\\quad{\longrightarrow{\sf{\ell = \sqrt{676}}}}\\\\\quad{\longrightarrow{\sf{\ell = 26 \: in}}}\\\\\quad\star\underline{\boxed{\sf{\pink{\ell = 26 \: in}}}} \end{gathered}[/tex]

Hence, the slant height of cone is 26 in.

[tex]\begin{gathered}\end{gathered}[/tex]

Now, finding the lateral area of cone by substituting the values in the formula :

[tex]\begin{gathered} \qquad{\longrightarrow{\sf{La_{(Cone)} = \pi r \ell}}}\\\\\qquad{\longrightarrow{\sf{La_{(Cone)} = \pi \times 10 \times 26}}}\\\\\qquad{\longrightarrow{\sf{La_{(Cone)} = \pi \times 260}}}\\\\\qquad{\longrightarrow{\sf{La_{(Cone)} = 260\pi\: {in}^{2}}}}\\\\ \qquad{\star{\underline{\boxed{\sf{\pink{La_{(Cone)} = 260\pi \: {in}^{2}}}}}}}\end{gathered}[/tex]

Therefore, the lateral area of cone is 260π in².

[tex]\rule{300}{2.5}[/tex]