Find the lateral area of this cone.
![Find the lateral area of this cone class=](https://us-static.z-dn.net/files/df5/167fde8bada49581f4597ddebb9f98f7.png)
Step-by-step explanation:
lateral surface area here = πrl
r = 10
l = √h²+r²= √ 24²+ 10² = 26
lateral surface area = 10 × 26 × π
= 260π in²
hope this will be helpful to you .
plz mark my answer as brainlist if you find it useful.
Answer:
The lateral area of cone is 260π in².
Step-by-step explanation:
[tex]\begin{gathered}\end{gathered}[/tex]
[tex]\begin{gathered}\end{gathered}[/tex]
[tex]\star{\underline{\boxed{\sf{\purple{\ell = \sqrt{{(r)}^{2} + {(h)}^{2}}}}}}}[/tex]
[tex]\star{\underline{\boxed{\sf{\purple{La_{(Cone)}= \pi r\ell}}}}}[/tex]
[tex]\begin{gathered}\end{gathered}[/tex]
Finding the slant height of cone by substituting the values in the formula :
[tex]\begin{gathered} \qquad{\longrightarrow{\sf{\ell = \sqrt{{(r)}^{2} + {(h)}^{2}}}}}\\\\\qquad{\longrightarrow{\sf{\ell = \sqrt{{(10)}^{2} + {(24)}^{2}}}}}\\\\\qquad{\longrightarrow{\sf{\ell = \sqrt{{(10 \times 10)} + {(24 \times 24)}}}}}\\\\\quad{\longrightarrow{\sf{\ell = \sqrt{(100)+(576)}}}}\\\\\qquad{\longrightarrow{\sf{\ell = \sqrt{100 + 576}}}}\\\\\quad{\longrightarrow{\sf{\ell = \sqrt{676}}}}\\\\\quad{\longrightarrow{\sf{\ell = 26 \: in}}}\\\\\quad\star\underline{\boxed{\sf{\pink{\ell = 26 \: in}}}} \end{gathered}[/tex]
Hence, the slant height of cone is 26 in.
[tex]\begin{gathered}\end{gathered}[/tex]
Now, finding the lateral area of cone by substituting the values in the formula :
[tex]\begin{gathered} \qquad{\longrightarrow{\sf{La_{(Cone)} = \pi r \ell}}}\\\\\qquad{\longrightarrow{\sf{La_{(Cone)} = \pi \times 10 \times 26}}}\\\\\qquad{\longrightarrow{\sf{La_{(Cone)} = \pi \times 260}}}\\\\\qquad{\longrightarrow{\sf{La_{(Cone)} = 260\pi\: {in}^{2}}}}\\\\ \qquad{\star{\underline{\boxed{\sf{\pink{La_{(Cone)} = 260\pi \: {in}^{2}}}}}}}\end{gathered}[/tex]
Therefore, the lateral area of cone is 260π in².
[tex]\rule{300}{2.5}[/tex]