Determine whether each set of points make a right triangle using the Pythagorean Theorem. 1. A(3 , -4) B(-4 , 3) C(0 , 0) 2. O(2 , 5) P(-1 , 3) Q(7 , 4) 3. T(1 , 1) U(3 , 3) V(5 , 1)

Respuesta :

Answer:

[tex]1.\ A(3 , -4)\ B(-4 , 3)\ C(0 , 0)[/tex] -- Not right triangle

[tex]2.\ O(2 , 5)\ P(-1 , 3)\ Q(7 , 4)[/tex] -- Not right triangle

[tex]3.\ T(1 , 1)\ U(3 , 3)\ V(5 , 1)[/tex] -- Right triangle

Explanation:

Required

Determine whether the given points make a right triangle

[tex]1.\ A(3 , -4)\ B(-4 , 3)\ C(0 , 0)[/tex]

First, calculate the distance between each point using:

[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}[/tex]

So, we have:

[tex]AB = \sqrt{(3 - -4)^2 + (-4 - 3)^2}= \sqrt{98} = 7\sqrt 2[/tex]

[tex]BC = \sqrt{(-4 - 0)^2 + (3 - 0)^2}= \sqrt{25} = 5[/tex]

[tex]AC = \sqrt{(3 - 0)^2 + (-4 - 0)^2}= \sqrt{25} = 5[/tex]

From the above computations, the longest side is AB.

So;

[tex]AB^2 = BC^2 + AC^2[/tex] --- Test of Pythagoras

[tex](7\sqrt 2)^2 = 5^2 + 5^2[/tex]

[tex]98 = 25 + 25[/tex]

[tex]98 \ne 50[/tex]

The above points do not make a right triangle

[tex]2.\ O(2 , 5)\ P(-1 , 3)\ Q(7 , 4)[/tex]

Calculate distance

[tex]OP = \sqrt{(2 - -1)^2 + (5 - 3)^2}= \sqrt{13}[/tex]

[tex]PQ = \sqrt{(-1 -7)^2 + (3 - 4)^2}= \sqrt{65}[/tex]

[tex]OQ = \sqrt{(2 -7)^2 + (5 - 4)^2}= \sqrt{26}[/tex]

From the above computations, the longest side is PQ

So;

[tex]PQ^2 = OP^2 + OQ^2[/tex] --- Test of Pythagoras

[tex]\sqrt{65}^2 = \sqrt{13}^2 + \sqrt{26}^2[/tex]

[tex]65 = 13 + 26[/tex]

[tex]65 \ne 39[/tex]

The above points do not make a right triangle

[tex]3.\ T(1 , 1)\ U(3 , 3)\ V(5 , 1)[/tex]

Calculate distance

[tex]TU = \sqrt{(1 -3)^2 + (1 - 3)^2}= \sqrt{8} = 2\sqrt2[/tex]

[tex]UV = \sqrt{(3 -5)^2 + (1 - 3)^2}= \sqrt{8} = 2\sqrt2[/tex]

[tex]TV = \sqrt{(1 -5)^2 + (1 - 1)^2}= \sqrt{16} = 4[/tex]

From the above computations, the longest side is TV

So;

[tex]TV^2 = TU^2 + UV^2[/tex] --- Test of Pythagoras

[tex]4^2 = (2\sqrt 2)^2 +(2\sqrt 2)^2[/tex]

[tex]16 = 8 + 8[/tex]

[tex]16 = 16[/tex]

The above points not make a right triangle