Respuesta :

Answer:

See Explanation

Step-by-step explanation:

Let us assume that [tex] \sqrt 3 - \sqrt 5[/tex] is a rational number.

So, it can be expressed in the form of [tex] \frac{p}{q} [/tex] where p and q are integers.

[tex]\therefore \sqrt 3 - \sqrt 5=\frac{p}{q}[/tex]

[tex]\therefore \sqrt 3 =\frac{p}{q}+ \sqrt 5[/tex]

[tex]\therefore \sqrt 3 =\frac{p+q\sqrt 5}{q}[/tex]

Squaring both sides:

[tex] (\sqrt 3) ^2 =\bigg(\frac{p+q\sqrt 5}{q}\bigg ) ^2 [/tex]

[tex]\therefore 3 =\frac{p^2 +5q^2 +2\sqrt 5 pq}{q^2 } [/tex]

[tex]\therefore 3q^2 ={p^2 +5q^2 +2\sqrt 5 pq}[/tex]

[tex]\therefore 0 = p^2 +5q^2 -3q^2 +2\sqrt 5 pq [/tex]

[tex]\therefore - 2\sqrt 5 pq=p^2 +2q^2 [/tex]

[tex]\therefore \sqrt 5 = \bigg (\frac{p^2 +2q^2}{-2pq} \bigg) [/tex]

[tex]\therefore \sqrt 5 = - \bigg(\frac{p^2 +2q^2}{2pq} \bigg) [/tex]

Since, p and q are integers so [tex] - \bigg(\frac{p^2 +2q^2}{2pq} \bigg) [/tex] is rational.

[tex]\therefore \sqrt 5 [/tex] is also rational.

But it contradicts the fact that [tex]\sqrt 5 [/tex] is irrational.

Hence, our assumption that [tex] \sqrt 3 - \sqrt 5[/tex] is rational is wrong.

[tex] \therefore \sqrt 3 - \sqrt 5[/tex] is irrational.

ACCESS MORE