Answer:
[tex]y = 2.096[/tex] or [tex]y = \frac{2\sqrt5+6}{5}}[/tex]
Step-by-step explanation:
Given
[tex]y = \frac{4}{x} + \sqrt x + 0.2 - 5x[/tex]
[tex]x = \frac{4}{5}[/tex]
Required
Find y
[tex]y = \frac{4}{x} + \sqrt x + 0.2 - 5x[/tex]
Substitute [tex]x = \frac{4}{5}[/tex]
[tex]y = \frac{4}{4/5} + \sqrt{4/5} + 0.2 - 5 * 4/5[/tex]
[tex]y = 5 + \sqrt{4/5} + 0.2 - 4[/tex]
Collect like terms
[tex]y = \sqrt{4/5} + 5 + 0.2 - 4[/tex]
[tex]y = \sqrt{\frac{4}{5}} + 1.2[/tex]
Split the surd
[tex]y = \frac{\sqrt4}{\sqrt5}} + 1.2[/tex]
[tex]y = \frac{2}{\sqrt5}} + 1.2[/tex]
Rationalize
[tex]y = \frac{2\sqrt5}{\sqrt5*\sqrt5}} + 1.2[/tex]
[tex]y = \frac{2\sqrt5}{5}} + 1.2[/tex]
Take LCM and add
[tex]y = \frac{2\sqrt5+1.2*5}{5}}[/tex]
[tex]y = \frac{2\sqrt5+6}{5}}[/tex]
or solve as:
[tex]y = \frac{2*2.24+6}{5}}[/tex]
[tex]y = \frac{10.48}{5}[/tex]
[tex]y = 2.096[/tex]