Answer:
- The population in 2001 is 23.1 million
- It will reach 28.3 million in 2013
Step-by-step explanation:
Given
[tex]A =23.1e^{0.0152t}[/tex]
Solving (a): Population in 2000.
This implies that
[tex]t = 2000 - 2000[/tex]
[tex]t = 0[/tex]
So, we have:
[tex]A =23.1e^{0.0152t}[/tex]
[tex]A =23.1e^{0.0152*0}[/tex]
[tex]A =23.1e^{0}[/tex]
Solve the exponent
[tex]A =23.1*1[/tex]
[tex]A =23.1[/tex]
The population in 2001 is 23.1 million
Solving (b): When will it reach 28.3 million
This implies that:
[tex]A =28.3[/tex]
So, we have:
[tex]A =23.1e^{0.0152t}[/tex]
[tex]28.3 = 23.1e^{0.0152t}[/tex]
Divide both sides by 23.1
[tex]1.225 = e^{0.0152t}[/tex]
Take natural logarithm of both sides
[tex]ln\ 1.225 = ln(e^{0.0152t})[/tex]
Rewrite as:
[tex]ln\ 1.225 = 0.0152t\ ln(e)[/tex]
[tex]ln(e) = 1[/tex]
So:
[tex]ln\ 1.225 = 0.0152t*1[/tex]
[tex]ln\ 1.225 = 0.0152t[/tex]
Make t the subject
[tex]t = \frac{ln\ 1.225}{0.0152}[/tex]
[tex]t = \frac{0.2029}{0.0152}[/tex]
[tex]t \approx 13[/tex]
Add the value of t to 2013 to get the actual year
[tex]Year = 2000 +13[/tex]
[tex]Year = 2013[/tex]
It will reach 28.3 million in 2013