Respuesta :

Given:

The figure of a right angle triangle with hypotenuse 10 and two angles [tex]45^\circ, 90^\circ[/tex]

To find:

The lengths of the legs.

Solution:

Two angles are given. By using the angle sum property, the third angle is:

Third angle = [tex]180^\circ-45^\circ- 90^\circ[/tex]

                   = [tex]45^\circ[/tex]

Base angles are equal it means the given triangle is an isosceles right triangle. So, the lengths of both legs are equal.

Let x be the lengths of both legs. Then by using Pythagoras theorem, we get

[tex]Hypotenuse^2=leg_1^2+leg_2^2[/tex]

[tex](10)^2=x^2+x^2[/tex]

[tex]100=2x^2[/tex]

[tex]\dfrac{100}{2}=x^2[/tex]

[tex]50=x^2[/tex]

Taking square root on both sides, we get

[tex]\pm \sqrt{50}=x[/tex]

[tex]\pm 5\sqrt{2}=x[/tex]

[tex]\pm 5\sqrt{2}=x[/tex]

The side length cannot be negative. So, the only value of x is [tex]5\sqrt{2}[/tex].

Therefore, the length of the both legs is [tex]5\sqrt{2}[/tex] units.

ACCESS MORE