HELPPP ASAP!! 10TH GRADE GEO
![HELPPP ASAP 10TH GRADE GEO class=](https://us-static.z-dn.net/files/dac/691a39791c04ac8bbf881dc0764b7a31.png)
Answer:
[tex]\huge\purple {\boxed {m\angle FEG =23\degree}} [/tex]
[tex] \huge \orange {\boxed {m\angle FEH=113\degree}} [/tex]
Step-by-step explanation:
In the given circle, [tex] \overline{EG} [/tex] is diameter and [tex] \overline{EH} [/tex] is tangent at point E.
[tex]\therefore \widehat {EFG} [/tex] is a semicircular arc.
Since, measure of semicircular arc is 180°
[tex]\therefore m(\widehat {EFG})=180\degree... (1)[/tex]
[tex]\because m( \widehat {EF}) +m(\widehat {FG}) = m(\widehat {EFG}) [/tex] .... (2)
From equations (1) & (2)
[tex]\therefore 134\degree +m(\widehat {FG}) = 180\degree[/tex]
[tex]\therefore m(\widehat {FG}) = 180\degree-134\degree [/tex]
[tex]\therefore m(\widehat {FG}) = 46\degree [/tex]
By inscribed angle theorem:
[tex] m\angle FEG =\frac{1}{2} m(\widehat {FG} ) [/tex]
[tex] m\angle FEG =\frac{1}{2} \times 46\degree [/tex]
[tex]\huge\purple {\boxed {m\angle FEG =23\degree}} [/tex]
By tangent secant theorem:
[tex] m\angle FEH=\frac{1}{2} (46\degree +180\degree) [/tex]
[tex] m\angle FEH=\frac{1}{2} (226\degree) [/tex]
[tex] \huge \orange {\boxed {m\angle FEH=113\degree}} [/tex]