Respuesta :

Answer:

[tex]AB= 20.9[/tex]

[tex]A = 33.2^\circ[/tex]

[tex]C = 54.8^\circ[/tex]

Step-by-step explanation:

Given

The above triangle

Required

Complete the lengths

To do this, we make use of sine rule.

[tex]\frac{a}{\sin A} = \frac{b}{\sin B}[/tex]

[tex]\frac{14}{\sin A} = \frac{24}{\sin 70}[/tex]

[tex]\frac{14}{\sin A} = 25.54[/tex]

Cross multiply

[tex]\sin A * 25.54 = 14[/tex]

[tex]\sin A = \frac{14}{25.54}[/tex]

[tex]\sin A = 0.5482[/tex]

Take Arc sine of both sides

[tex]A = sin^{-1}(0.5482)[/tex]

[tex]A = 33.2^\circ[/tex]

To calculate C, we have:

[tex]C = 180 -A-B[/tex] --- angles in a triangle

[tex]C = 180 -55.2-70[/tex]

[tex]C = 54.8^\circ[/tex]

Calculate length AB using the sine rule.

[tex]\frac{AB}{sin C} = \frac{AC}{B}[/tex]

So, we have:

[tex]\frac{AB}{sin 54.8} = \frac{24}{sin 70}[/tex]

Make AB the subject

[tex]AB= sin 54.8*\frac{24}{sin 70}[/tex]

[tex]AB= sin 54.8* 25.54[/tex]

[tex]AB= 20.9[/tex] -- approximated