Answer:
[tex]AB= 20.9[/tex]
[tex]A = 33.2^\circ[/tex]
[tex]C = 54.8^\circ[/tex]
Step-by-step explanation:
Given
The above triangle
Required
Complete the lengths
To do this, we make use of sine rule.
[tex]\frac{a}{\sin A} = \frac{b}{\sin B}[/tex]
[tex]\frac{14}{\sin A} = \frac{24}{\sin 70}[/tex]
[tex]\frac{14}{\sin A} = 25.54[/tex]
Cross multiply
[tex]\sin A * 25.54 = 14[/tex]
[tex]\sin A = \frac{14}{25.54}[/tex]
[tex]\sin A = 0.5482[/tex]
Take Arc sine of both sides
[tex]A = sin^{-1}(0.5482)[/tex]
[tex]A = 33.2^\circ[/tex]
To calculate C, we have:
[tex]C = 180 -A-B[/tex] --- angles in a triangle
[tex]C = 180 -55.2-70[/tex]
[tex]C = 54.8^\circ[/tex]
Calculate length AB using the sine rule.
[tex]\frac{AB}{sin C} = \frac{AC}{B}[/tex]
So, we have:
[tex]\frac{AB}{sin 54.8} = \frac{24}{sin 70}[/tex]
Make AB the subject
[tex]AB= sin 54.8*\frac{24}{sin 70}[/tex]
[tex]AB= sin 54.8* 25.54[/tex]
[tex]AB= 20.9[/tex] -- approximated