What function represents the pattern shown in the table?
![What function represents the pattern shown in the table class=](https://us-static.z-dn.net/files/d0c/2eb0f7eaad0e7c9729956fea5f5bd9c5.png)
Given:
The table of values of an exponential function.
To find:
The function for the given table of values.
Solution:
The general exponential function is:
[tex]y=ab^x[/tex] ...(i)
Where, a is the initial value and b is growth factor.
From the given table it is clear that the function passes through the points (1,9) and (2,36). It means the function must be true for these two points.
[tex]9=ab^1[/tex] ...(ii)
[tex]36=ab^2[/tex] ...(iii)
On dividing (iii) by (ii), we get
[tex]\dfrac{36}{9}=\dfrac{ab^2}{ab}[/tex]
[tex]4=b[/tex]
Putting [tex]b=4[/tex] in (ii), we get
[tex]9=a(4)^1[/tex]
[tex]\dfrac{9}{4}=a[/tex]
Putting [tex]a=\dfrac{9}{4},b=4[/tex] in (i), we get
[tex]y=\dfrac{9}{4}(4)^x[/tex]
[tex]y=9(4)^{x-1}[/tex]
The function notation with variable n is:
[tex]f(n)=9(4)^{n-1}[/tex]
Therefore, the correct option is D.