Respuesta :

Given:

The table of values of an exponential function.

To find:

The function for the given table of values.

Solution:

The general exponential function is:

[tex]y=ab^x[/tex]        ...(i)

Where, a is the initial value and b is growth factor.

From the given table it is clear that the function passes through the points (1,9) and (2,36). It means the function must be true for these two points.

[tex]9=ab^1[/tex]        ...(ii)

[tex]36=ab^2[/tex]       ...(iii)

On dividing (iii) by (ii), we get

[tex]\dfrac{36}{9}=\dfrac{ab^2}{ab}[/tex]  

[tex]4=b[/tex]  

Putting [tex]b=4[/tex] in (ii), we get

[tex]9=a(4)^1[/tex]

[tex]\dfrac{9}{4}=a[/tex]

Putting [tex]a=\dfrac{9}{4},b=4[/tex] in (i), we get

[tex]y=\dfrac{9}{4}(4)^x[/tex]

[tex]y=9(4)^{x-1}[/tex]

The function notation with variable n is:

[tex]f(n)=9(4)^{n-1}[/tex]

Therefore, the correct option is D.

ACCESS MORE