Respuesta :
Answer:
Step-by-step explanation:
From the given information, we can compute the table showing the summarized statistics of the two alloys A & B:
Alloy A Alloy B
Sample mean [tex]\bar {x} _A = 49.5[/tex] [tex]\bar {x} _B = 45.5[/tex]
Equal standard deviation [tex]\sigma_A = 5[/tex] [tex]\sigma_B= 5[/tex]
Sample size [tex]n_A = 30[/tex] [tex]n_{B}= 30[/tex]
Mean of the sampling distribution is :
[tex]\mu_{\bar{X_1}-\bar{X_2}}= 49.5-45.5 \\ \\ = 4.0[/tex]
Standard deviation of sampling distribution:
[tex]\sigma_{\bar{x_1}-\bar{x_2} }= \sqrt{\sigma^2_{\bar{x_1}-\bar{x_2} }} \\ \\ = \sqrt{\dfrac{\sigma_1^2}{n_1} + \dfrac{\sigma^2_2}{n_2} } \\ \\ =\sqrt{\dfrac{25}{30}+\dfrac{25}{30}} \\\\=\sqrt{1.667} \\ \\ =1.2909[/tex]
Hypothesis testing.
Null hypothesis: [tex]H_o: \mu_A -\mu_B = 0[/tex]
Alternative hypothesis: [tex]H_A:\mu_A -\mu_B > 4[/tex]
The required probability is:
[tex]P(\overline X_A - \overline X_B>4|\mu_A - \mu_B) = P\Big (\dfrac{(\overline X_A - \overline X_B)-\mu_{X_A-X_B}}{\sigma_{\overline x_A -\overline x_B}} > \dfrac{4 - \mu_{X_A-\overline X_B}}{\sigma _{\overline x_A - \overline X_B}} \Big) \\ \\ = P \Big( z > \dfrac{4-0}{1.2909}\Big) \\ \\ = P(z \ge 3.10)\\ \\ = 1 - P(z < 3.10) \\ \\ \text{Using EXCEL Function:} \\ \\ = 1 - [NORMDIST(3.10)] \\ \\ = 1- 0.999032 \\ \\ 0.000968 \\ \\ \simeq 0.0010[/tex]
This implies that a minimal chance of probability shows that the difference of 4 is not likely, provided that the two population means are the same.
b)
Since the P-value is very small which is lower than any level of significance.
Then, we reject [tex]H_o[/tex] and conclude that there is enough evidence to fully support alloy A.