Respuesta :

Answer:

the largest angle of the field is 149⁰

Step-by-step explanation:

Given;

perimeter of the triangular filed, P = 120 m

length of two known sides, a and b = 21 m and 40 m respectively

The length of the third side is calculated as follows;

a + b + c = P

21 m  + 40 m  + c = 120 m

61 m +  c = 120 m

c = 120 m - 61 m

c = 59 m

                         B

                     ↓            ↓  

                  ↓                          ↓

                ↓                                       ↓

            A →  →  → →  →  → →  → →    →    →  C

Consider ABC as the triangular field;

Angle A is calculated by applying cosine rule;

[tex]a^2 = b^2 + c^2 - 2bc \ Cos A\\\\Cos \ A = \frac{b^2 + c^2 - a^2}{2bc} \\\\Cos \ A = \frac{40^2 + 59^2 - 21^2}{2 \times 40 \times 59} \\\\Cos \ A = 0.983\\\\A = Cos ^{-1} (0.983)\\\\A = 10.6 \ ^0[/tex]

Angle B is calculated as follows;

[tex]Cos \ B = \frac{a^2 + c^2 - b^2}{2ac} \\\\Cos \ B = \frac{21^2 + 59^2 - 40^2}{2 \times 21 \times 59} \\\\Cos \ B = 0.937\\\\B= Cos ^{-1} (0.937)\\\\B = 20.5 \ ^0[/tex]

Angle C is calculated as follows;

[tex]Cos \ C = \frac{a^2 + b^2 - c^2}{2ab} \\\\Cos \ C = \frac{21^2 + 40^2 - 59^2}{2 \times 21 \times 40} \\\\Cos \ C = -0.857\\\\C = Cos ^{-1} (-0.857)\\\\C = 149\ ^0[/tex]

Therefore, the largest angle of the field is 149⁰.