A parabola is represented by the equation y2 = 5x. Which equation represents the directrix? Y = –20 x = –20 y = Negative five-fourths x = Negative five-fourths

Respuesta :

Answer:

[tex]x = - \frac{5}{4}[/tex]

Explanation:

Given

[tex]y^2 = 5x[/tex]

Required

Determine the directrix

First, we express the equation in form:

[tex](y - k)^2 = 4p (x - h)[/tex]

Where the directrix is:

[tex]x = h - p[/tex]

So, we have:

[tex]y^2 = 5x[/tex]

Rewrite as:

[tex](y - 0)^2 = 5(x - 0)[/tex]

Multiply the right hand side by 4/4

[tex](y - 0)^2 = \frac{4}{4} * 5(x - 0)[/tex]

[tex](y - 0)^2 = 4* \frac{5}{4} (x - 0)[/tex]

By comparison:

[tex](y - k)^2 = 4p (x - h)[/tex] and [tex](y - 0)^2 = 4* \frac{5}{4} (x - 0)[/tex]

[tex]k = 0[/tex]

[tex]p =\frac{5}{4}[/tex]

[tex]h = 0[/tex]

The directrix is calculated as:

[tex]x = h - p[/tex]

So:

[tex]x = 0 - \frac{5}{4}[/tex]

[tex]x = - \frac{5}{4}[/tex]

Answer:

D on edg 2021

Explanation:

yoiuuiy

ACCESS MORE