I'll. ark brainlyest and give a lot of points for answering this right

Answer:
[tex] \displaystyle T'( 2,4)[/tex]
[tex] \displaystyle U'( 1,1)[/tex]
[tex] \displaystyle S' ( 3,2)[/tex]
Step-by-step explanation:
we current vertices of the given triangle
remember that,
[tex] \rm\displaystyle(x,y) \xrightarrow{ \rm reflection \: over \: y - axis}( - x,y)[/tex]
so we obtain:
[tex] \rm\displaystyle \: T( - 2,4) \xrightarrow{ \rm reflection \: over \: y - axis}T'( 2,4)[/tex]
[tex] \rm\displaystyle \: U( - 1,1) \xrightarrow{ \rm reflection \: over \: y - axis}U' ( 1,1)[/tex]
[tex] \rm\displaystyle S( - 3,2) \xrightarrow{ \rm reflection \: over \: y - axis}S'( 3,2)[/tex]