Two processes in a manufacturing line are performed manually: operation A and operation B. A random sample of 50 different assemblies using operation A shows that the sample average time per assembly is 8.05 minutes, with a population standard deviation of 1.36 minutes. A random sample of 38 different assemblies using operation B shows that the sample average time per assembly is 7.26 minutes, with a population standard deviation of 1.06 minutes.

Required:
For α = 0.10, is there enough evidence in these samples to declare that operation A takes significantly longer to perform than operation B?

Respuesta :

Answer:

3.06

Step-by-step explanation:

The correct answer is - 3.06

Reason -

For sample A :

mean, [tex]\bar{x_{1} }[/tex] = 8.05          

Standard deviation, [tex]\sigma_{1}[/tex] = 1.36          

Size, [tex]n_{1}[/tex] = 50          

                 

For sample B :

mean, [tex]\bar{x_{2} }[/tex] = 7.26          

Standard deviation, [tex]\sigma_{2}[/tex] = 1.06          

Size, [tex]n_{2}[/tex] = 38

Now,

[tex]\bar{x_{1} }[/tex] - [tex]\bar{x_{2} }[/tex]  = 8.05 - 7.26 = 0.79

Standard deviation error, SE = √([tex]\sigma_{1}[/tex]²/[tex]n_{1}[/tex] + [tex]\sigma_{2}[/tex]²/[tex]n_{2}[/tex])  = 0.2580

Now,

Z-statistic = ([tex]\bar{x_{1} }[/tex] - [tex]\bar{x_{2} }[/tex] )/ SE

                = 0.79/0.2580

                = 3.06

⇒Z-statistic = 3.06

ACCESS MORE