Respuesta :
Answer:
(a): Marginal pmf of x
[tex]P(0) = 0.72[/tex]
[tex]P(1) = 0.28[/tex]
(b): Marginal pmf of y
[tex]P(0) = 0.81[/tex]
[tex]P(1) = 0.19[/tex]
(c): Mean and Variance of x
[tex]E(x) = 0.28[/tex]
[tex]Var(x) = 0.2016[/tex]
(d): Mean and Variance of y
[tex]E(y) = 0.19[/tex]
[tex]Var(y) = 0.1539[/tex]
(e): The covariance and the coefficient of correlation
[tex]Cov(x,y) = 0.0468[/tex]
[tex]r \approx 0.2657[/tex]
Step-by-step explanation:
Given
x = bottles
y = carton
See attachment for complete question
Solving (a): Marginal pmf of x
This is calculated as:
[tex]P(x) = \sum\limits^{}_y\ P(x,y)[/tex]
So:
[tex]P(0) = P(0,0) + P(0,1)[/tex]
[tex]P(0) = 0.63 + 0.09[/tex]
[tex]P(0) = 0.72[/tex]
[tex]P(1) = P(1,0) + P(1,1)[/tex]
[tex]P(1) = 0.18 + 0.10[/tex]
[tex]P(1) = 0.28[/tex]
Solving (b): Marginal pmf of y
This is calculated as:
[tex]P(y) = \sum\limits^{}_x\ P(x,y)[/tex]
So:
[tex]P(0) = P(0,0) + P(1,0)[/tex]
[tex]P(0) = 0.63 + 0.18[/tex]
[tex]P(0) = 0.81[/tex]
[tex]P(1) = P(0,1) + P(1,1)[/tex]
[tex]P(1) = 0.09 + 0.10[/tex]
[tex]P(1) = 0.19[/tex]
Solving (c): Mean and Variance of x
Mean is calculated as:
[tex]E(x) = \sum( x * P(x))[/tex]
So, we have:
[tex]E(x) = 0 * P(0) + 1 * P(1)[/tex]
[tex]E(x) = 0 * 0.72 + 1 * 0.28[/tex]
[tex]E(x) = 0 + 0.28[/tex]
[tex]E(x) = 0.28[/tex]
Variance is calculated as:
[tex]Var(x) = E(x^2) - (E(x))^2[/tex]
Calculate [tex]E(x^2)[/tex]
[tex]E(x^2) = \sum( x^2 * P(x))[/tex]
[tex]E(x^2) = 0^2 * 0.72 + 1^2 * 0.28[/tex]
[tex]E(x^2) = 0 + 0.28[/tex]
[tex]E(x^2) = 0.28[/tex]
So:
[tex]Var(x) = E(x^2) - (E(x))^2[/tex]
[tex]Var(x) = 0.28 - 0.28^2[/tex]
[tex]Var(x) = 0.28 - 0.0784[/tex]
[tex]Var(x) = 0.2016[/tex]
Solving (d): Mean and Variance of y
Mean is calculated as:
[tex]E(y) = \sum(y * P(y))[/tex]
So, we have:
[tex]E(y) = 0 * P(0) + 1 * P(1)[/tex]
[tex]E(y) = 0 * 0.81 + 1 * 0.19[/tex]
[tex]E(y) = 0+0.19[/tex]
[tex]E(y) = 0.19[/tex]
Variance is calculated as:
[tex]Var(y) = E(y^2) - (E(y))^2[/tex]
Calculate [tex]E(y^2)[/tex]
[tex]E(y^2) = \sum(y^2 * P(y))[/tex]
[tex]E(y^2) = 0^2 * 0.81 + 1^2 * 0.19[/tex]
[tex]E(y^2) = 0 + 0.19[/tex]
[tex]E(y^2) = 0.19[/tex]
So:
[tex]Var(y) = E(y^2) - (E(y))^2[/tex]
[tex]Var(y) = 0.19 - 0.19^2[/tex]
[tex]Var(y) = 0.19 - 0.0361[/tex]
[tex]Var(y) = 0.1539[/tex]
Solving (e): The covariance and the coefficient of correlation
Covariance is calculated as:
[tex]COV(x,y) = E(xy) - E(x) * E(y)[/tex]
Calculate E(xy)
[tex]E(xy) = \sum (xy * P(xy))[/tex]
This gives:
[tex]E(xy) = x_0y_0 * P(0,0) + x_1y_0 * P(1,0) +x_0y_1 * P(0,1) + x_1y_1 * P(1,1)[/tex]
[tex]E(xy) = 0*0 * 0.63 + 1*0 * 0.18 +0*1 * 0.09 + 1*1 * 0.1[/tex]
[tex]E(xy) = 0+0+0 + 0.1[/tex]
[tex]E(xy) = 0.1[/tex]
So:
[tex]COV(x,y) = E(xy) - E(x) * E(y)[/tex]
[tex]Cov(x,y) = 0.1 - 0.28 * 0.19[/tex]
[tex]Cov(x,y) = 0.1 - 0.0532[/tex]
[tex]Cov(x,y) = 0.0468[/tex]
The coefficient of correlation is then calculated as:
[tex]r = \frac{Cov(x,y)}{\sqrt{Var(x) * Var(y)}}[/tex]
[tex]r = \frac{0.0468}{\sqrt{0.2016 * 0.1539}}[/tex]
[tex]r = \frac{0.0468}{\sqrt{0.03102624}}[/tex]
[tex]r = \frac{0.0468}{0.17614266944}[/tex]
[tex]r = 0.26569371378[/tex]
[tex]r \approx 0.2657[/tex] --- approximated
