Respuesta :
Answer:
(a)
[tex]\bar x_1 =41.33[/tex] [tex]\sigma_1 = 7.48[/tex]
[tex]\bar x_2 =22.3[/tex] [tex]\sigma_2 = 4.53[/tex]
(b)
[tex]d = 19.03[/tex]
(c)
[tex]CI = 16.33[/tex] to [tex]21.73[/tex]
Step-by-step explanation:
Given
[tex]n_1 = 10\\ n_2 = 12[/tex]
And the accompanying data for private (1) and public (2) colleges
Solving (a): The sample mean and sample standard deviations
Private College
Calculating sample mean
This is calculated as:
[tex]\bar x_i = \frac{\sum x_i}{n_i}[/tex]
[tex]\bar x_1 =\frac{52.8+30.6+43.2 +45.8 +33.3+33.3 +50.5 +44.0 +42.0 +37.8}{10}[/tex]
[tex]\bar x_1 =\frac{413.3}{10}[/tex]
[tex]\bar x_1 =41.33[/tex]
Calculating sample standard deviation
This is calculated as:
[tex]\sigma_i = \sqrt\frac{\sum(x_i - \bar x_i)}{n_i-1}[/tex]
[tex]\sigma_1 = \sqrt\frac{(52.8-41.33)^2+(30.6-41.33)^2+.........+(37.8-41.33)^2}{10-1}[/tex]
[tex]\sigma_1 = \sqrt\frac{503.261}{9}[/tex]
[tex]\sigma_1 = \sqrt{55.9178888889[/tex]
[tex]\sigma_1 = 7.4778264816[/tex]
[tex]\sigma_1 = 7.48[/tex] -- approximated
Public College
Calculating sample mean
[tex]\bar x_2 =\frac{20.3 +22.8 +28.2 +18.5 +15.6 +25.6+ 24.1 +14.4 +28.5 +21.8 +22.0 +25.8}{12}[/tex]
[tex]\bar x_2 =\frac{267.6}{12}[/tex]
[tex]\bar x_2 =22.3[/tex]
Calculating sample standard deviation
[tex]\sigma_2 = \sqrt\frac{(20.3 -22.3)^2+(22.8 -22.3)^2+(28.2 -22.3)^2+(18.5 -22.3)^2+(15.6 -22.3)^2+................+(25.8-22.3)^2}{12-1}[/tex][tex]\sigma_2 = \sqrt\frac{225.96}{11}[/tex]
[tex]\sigma_2 = \sqrt{20.5418181818[/tex]
[tex]\sigma_2 = 4.532308262[/tex]
[tex]\sigma_2 = 4.53[/tex] -- approximated
Solving (b): Point estimate of the difference between the two population means
This is calculated as:
[tex]d = \bar x_1 - \bar x_2[/tex]
[tex]d = 41.33 - 22.3[/tex]
[tex]d = 19.03[/tex]
Solving (c): 95% confidence interval
First, calculate the degrees of freedom:
[tex]df = \frac{(\sigma_1^2/n_1 + \sigma_2^2/n_2)^2}{\frac{(\sigma_1^2/n_1)^2}{n_1 - 1} + \frac{(\sigma_2^2/n_2)^2}{n_2 - 1}}[/tex]
[tex]df = \frac{(7.48^2/10 + 4.53^2/12)^2}{\frac{(7.48^2/10)^2}{10 - 1} + \frac{(4.53^2/12)^2}{12 - 1}}[/tex]
[tex]df = \frac{53.3647}{31.3045/9 + 2.9244/11}[/tex]
[tex]df = \frac{53.3647}{3.7441}[/tex]
[tex]df = 14.2530[/tex]
[tex]df = 14[/tex]
Calculate the critical value (t)
At 95% confidence interval and df = 14;
[tex]df = 14[/tex]
The confidence interval is then calculated as:
[tex]CI = (\bar x_1 - \bar x_2) \± \sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}[/tex]
[tex]CI = (41.33 - 22.3) \± \sqrt{7.48^2/10 + 4.53^2/12}[/tex]
[tex]CI = 19.03 \± \sqrt{7.305115[/tex]
[tex]CI = 19.03 \± 2.70[/tex]
Split
[tex]CI = 19.03 - 2.70[/tex] to [tex]19.03 + 2.70[/tex]
[tex]CI = 16.33[/tex] to [tex]21.73[/tex]
This implies that:
Private colleges have population mean annual cost of $16.33 to $21.73 more expensive than public colleges