Answer:
[tex]Mean = 0.36[/tex]
[tex]SD = 0.5817[/tex]
[tex]P(x=3) = 0.003588[/tex]
Step-by-step explanation:
Given
Let
A = Event of being a universal donor.
So:
[tex]P(A) = 0.06[/tex]
[tex]n = 6[/tex]
Solving (a): Mean and Standard deviation.
The mean is:
[tex]Mean = np[/tex]
[tex]Mean = 6 * 0.06[/tex]
[tex]Mean = 0.36[/tex]
The standard deviation is:
[tex]SD = \sqrt{np(1-p)}[/tex]
[tex]SD = \sqrt{6*0.06*(1-0.06)}[/tex]
[tex]SD = \sqrt{0.3384}[/tex]
[tex]SD = 0.5817[/tex]
Solving (b): P(x = 3)
The event is a binomial event an dthe probability is calculated as:
[tex]P(x) = ^nC_x * p^x * (1-p)^{n-x}[/tex]
So, we have:
[tex]P(x=3) = ^6C_3 * 0.06^3 * (1-0.06)^{6-3}[/tex]
[tex]P(x=3) = ^6C_3 * 0.06^3 * (1-0.06)^3[/tex]
[tex]P(x=3) = 20 * 0.06^3 * (1-0.06)^3[/tex]
[tex]P(x=3) = 0.003588[/tex]