Respuesta :

Given:

The two vectors are:

[tex]\overrightarrow{a}=2\hat{i}-\hat{j}+\hat{k}[/tex]

[tex]\overrightarrow{b}=\hat{i}-3\hat{j}+5\hat{k}[/tex]

To find:

The value of [tex]|\overrightarrow{a}\times \overrightarrow{b}|[/tex].

Solution:

We have,

[tex]\overrightarrow{a}=2\hat{i}-\hat{j}+\hat{k}[/tex]

[tex]\overrightarrow{b}=\hat{i}-3\hat{j}+5\hat{k}[/tex]

The cross product of these two vectors is:

[tex]\overrightarrow{a}\times \overrightarrow{b}=\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\2&-1&1\\1&-3&5\end{vmatrix}[/tex]

[tex]\overrightarrow{a}\times \overrightarrow{b}=\hat{i}[(-1)(5)-(1)(-3)]-\hat{j}[(2)(5)-(1)(1)]+\hat{k}[(2)(-3)-(-1)(1)][/tex]

[tex]\overrightarrow{a}\times \overrightarrow{b}=\hat{i}[-5+3]-\hat{j}[10-1]+\hat{k}[-6+1][/tex]

[tex]\overrightarrow{a}\times \overrightarrow{b}=-2\hat{i}-9\hat{j}-5\hat{k}[/tex]

Now the magnitude of the cross product is:

[tex]|\overrightarrow{a}\times \overrightarrow{b}|=\sqrt{(-2)^2+(-9)^2+(-5)^2}[/tex]

[tex]|\overrightarrow{a}\times \overrightarrow{b}|=\sqrt{4+81+25}[/tex]

[tex]|\overrightarrow{a}\times \overrightarrow{b}|=\sqrt{110}[/tex]

Therefore, the value of [tex]|\overrightarrow{a}\times \overrightarrow{b}|[/tex] is [tex]\sqrt{110}[/tex].

ACCESS MORE