HELP WILL GIVE BRAINLESS Which choice is equivalent to the fraction below? (Hint: Rationalize the
denominator and simplify.)
2
√x + √x+ 2
2
A. VX + 1x + 2
B. FxVx+ 2
C. x + 2 - 3

HELP WILL GIVE BRAINLESS Which choice is equivalent to the fraction below Hint Rationalize the denominator and simplify 2 x x 2 2 A VX 1x 2 B FxVx 2 C x 2 3 class=

Respuesta :

Answer:

C. [tex] \sqrt{x + 2} - \sqrt{x}[/tex]

Step-by-step explanation:

[tex] \frac{2}{ \sqrt{x} + \sqrt{x + 2} } \\ \\ = \frac{2}{ (\sqrt{x} + \sqrt{x + 2}) } \times \frac{(\sqrt{x} - \sqrt{x + 2})}{(\sqrt{x} - \sqrt{x + 2})} \\ \\ = \frac{2( \sqrt{x} - \sqrt{x + 2}) }{ ({ \sqrt{x} )}^{2} - {( \sqrt{x + 2} )}^{2} } \\ \\ = \frac{2( \sqrt{x} - \sqrt{x + 2}) }{ x - {( x + 2)} } \\ \\ = \frac{2( \sqrt{x} - \sqrt{x + 2}) }{ x - x - 2 } \\ \\ = \frac{2( \sqrt{x} - \sqrt{x + 2}) }{ - 2 } \\ \\ = - ( \sqrt{x} - \sqrt{x + 2}) \\ \\ \frac{2}{ \sqrt{x} + \sqrt{x + 2} } = \purple{ \bold{\sqrt{x + 2} - \sqrt{x} }}[/tex]

ACCESS MORE