Use a special right triangle to find the value of y. Write as a decimal rounded to the nearest 10th
![Use a special right triangle to find the value of y Write as a decimal rounded to the nearest 10th class=](https://us-static.z-dn.net/files/dcf/1b2ce887fa41ef42d5e3401c88b1b417.png)
Given:
The figure of a right angle triangle.
To find:
The value of y.
Solution:
in a right angle triangle,
[tex]\sin \theta=\dfrac{Opposite}{Hypotenuse}[/tex]
In the given right triangle,
[tex]\sin 60^\circ=\dfrac{6}{y}[/tex]
[tex]\dfrac{\sqrt{3}}{2}=\dfrac{6}{y}[/tex]
On cross multiplication, we get
[tex]\sqrt{3}y=12[/tex]
[tex]y=\dfrac{12}{\sqrt{3}}[/tex]
[tex]y=\dfrac{12\sqrt{3}}{3}[/tex]
[tex]y=4\sqrt{3}[/tex]
Therefore, the value of y is [tex]4\sqrt{3}[/tex] units.