Respuesta :

To find :

  • The value of x.

Solving the equation :

[tex] \longmapsto \sf { \dfrac{4(3x-5)}{1+5} = 13} [/tex]

[tex] \longmapsto \sf { \dfrac{12x-20}{6} = 13} [/tex]

[tex] \longmapsto [/tex] 12x - 20 = 6 × 13

[tex] \longmapsto [/tex] 12x - 20 = 78

[tex] \longmapsto [/tex] 12x = 78 + 20

[tex] \longmapsto [/tex] 12x = 98

[tex] \longmapsto [/tex] x =[tex] \sf { \dfrac{98}{12} } [/tex]

  • Divide the numerator and the denominator in R.H.S by 2.

[tex] \longmapsto \bf\red { x = \dfrac{49}{6} } [/tex]

Value of x is 49/6.

Answer:

  • [tex]{\boxed{\sf{\gray{x = \dfrac{49}{6}}}}}[/tex]

Step-by-step explanation:

[tex]{\underline{\underline{\bf{\red{\:\:\:Given\: Equation\:\:\:}}}}}[/tex]

[tex]\mapsto\:\:\sf{\dfrac{4(3x-5)}{1+5}=13}[/tex]

  • We need to find the value of x in the given equation.

[tex]{\underline{\underline{\bf{\blue{\:\:\:Solution\:\:\:}}}}}\\\\[/tex]

______________________

[tex]\\[/tex]

[tex]\qquad:\longrightarrow\:\:\:\:\sf\red{\dfrac{4(3x-5)}{1+5}=13}[/tex]

[tex]\\[/tex]

[tex]\qquad:\longrightarrow\:\:\:\:\sf\orange{\dfrac{4(3x-5)}{6}=13}[/tex]

[tex]\\[/tex]

[tex]\qquad:\longrightarrow\:\:\:\:\sf\green{\dfrac{2(3x-5)}{3}=13}[/tex]

[tex]\\[/tex]

[tex]\qquad:\longrightarrow\:\:\:\:\sf\blue{\dfrac{6x-3}{10}=13}[/tex]

[tex]\\[/tex]

[tex]\qquad:\longrightarrow\:\:\:\:\sf\purple{6x-10=39}[/tex]

[tex]\\[/tex]

[tex]\qquad:\longrightarrow\:\:\:\:\sf\red{6x = 39+10}[/tex]

[tex]\\[/tex]

[tex]\qquad:\longrightarrow\:\:\:\:\sf\blue{6x = 49}[/tex]

[tex]\\[/tex]

[tex]\qquad:\longrightarrow\:\:\:\:{\underline{\boxed{\sf{\purple{x = \dfrac{49}{6}}}}}}[/tex]

[tex]\\[/tex]

______________________

ACCESS MORE