Respuesta :
To find :
- The value of x.
Solving the equation :
[tex] \longmapsto \sf { \dfrac{4(3x-5)}{1+5} = 13} [/tex]
[tex] \longmapsto \sf { \dfrac{12x-20}{6} = 13} [/tex]
[tex] \longmapsto [/tex] 12x - 20 = 6 × 13
[tex] \longmapsto [/tex] 12x - 20 = 78
[tex] \longmapsto [/tex] 12x = 78 + 20
[tex] \longmapsto [/tex] 12x = 98
[tex] \longmapsto [/tex] x =[tex] \sf { \dfrac{98}{12} } [/tex]
- Divide the numerator and the denominator in R.H.S by 2.
[tex] \longmapsto \bf\red { x = \dfrac{49}{6} } [/tex]
Value of x is 49/6.
Answer:
- [tex]{\boxed{\sf{\gray{x = \dfrac{49}{6}}}}}[/tex]
Step-by-step explanation:
[tex]{\underline{\underline{\bf{\red{\:\:\:Given\: Equation\:\:\:}}}}}[/tex]
[tex]\mapsto\:\:\sf{\dfrac{4(3x-5)}{1+5}=13}[/tex]
- We need to find the value of x in the given equation.
[tex]{\underline{\underline{\bf{\blue{\:\:\:Solution\:\:\:}}}}}\\\\[/tex]
______________________
[tex]\\[/tex]
[tex]\qquad:\longrightarrow\:\:\:\:\sf\red{\dfrac{4(3x-5)}{1+5}=13}[/tex]
[tex]\\[/tex]
[tex]\qquad:\longrightarrow\:\:\:\:\sf\orange{\dfrac{4(3x-5)}{6}=13}[/tex]
[tex]\\[/tex]
[tex]\qquad:\longrightarrow\:\:\:\:\sf\green{\dfrac{2(3x-5)}{3}=13}[/tex]
[tex]\\[/tex]
[tex]\qquad:\longrightarrow\:\:\:\:\sf\blue{\dfrac{6x-3}{10}=13}[/tex]
[tex]\\[/tex]
[tex]\qquad:\longrightarrow\:\:\:\:\sf\purple{6x-10=39}[/tex]
[tex]\\[/tex]
[tex]\qquad:\longrightarrow\:\:\:\:\sf\red{6x = 39+10}[/tex]
[tex]\\[/tex]
[tex]\qquad:\longrightarrow\:\:\:\:\sf\blue{6x = 49}[/tex]
[tex]\\[/tex]
[tex]\qquad:\longrightarrow\:\:\:\:{\underline{\boxed{\sf{\purple{x = \dfrac{49}{6}}}}}}[/tex]
[tex]\\[/tex]