Respuesta :

Given:

The length of a rectangle is 3 cm less than its width.

The area of the rectangle is 270 cm².

To find:

The dimensions of the rectangle.

Solution:

Let x be the width of the rectangle. Then,

[tex]\text{Length}=x-3[/tex]

Area of a rectangle is:

[tex]\text{Area}=\text{Length}\times \text{width}[/tex]

[tex]270=(x-3)(x)[/tex]

[tex]270=x^2-3x[/tex]

[tex]0=x^2-3x-270[/tex]

Splitting the middle term, we get

[tex]x^2-18x+15x-270=0[/tex]

[tex]x(x-18)+15(x-18)=0[/tex]

[tex](x-18)(x+15)=0[/tex]

[tex]x=18,-15[/tex]

Width of the rectangle cannot be negative. So, the only value of x is 18.

[tex]Width=18[/tex]

[tex]Length=18-3[/tex]

[tex]Length=15[/tex]

Therefore, the length of the rectangle is 15 cm and the width of the rectangle is 18 cm.

ACCESS MORE