Given:
The length of a rectangle is 3 cm less than its width.
The area of the rectangle is 270 cm².
To find:
The dimensions of the rectangle.
Solution:
Let x be the width of the rectangle. Then,
[tex]\text{Length}=x-3[/tex]
Area of a rectangle is:
[tex]\text{Area}=\text{Length}\times \text{width}[/tex]
[tex]270=(x-3)(x)[/tex]
[tex]270=x^2-3x[/tex]
[tex]0=x^2-3x-270[/tex]
Splitting the middle term, we get
[tex]x^2-18x+15x-270=0[/tex]
[tex]x(x-18)+15(x-18)=0[/tex]
[tex](x-18)(x+15)=0[/tex]
[tex]x=18,-15[/tex]
Width of the rectangle cannot be negative. So, the only value of x is 18.
[tex]Width=18[/tex]
[tex]Length=18-3[/tex]
[tex]Length=15[/tex]
Therefore, the length of the rectangle is 15 cm and the width of the rectangle is 18 cm.