What is the length of the unknown leg in the right triangle

Given:
The figure of a right angle triangle, we hypotenuse [tex]\sqrt{113}[/tex] mi and perpendicular 9 mi.
To find:
The length of the unknown leg in the right triangle.
Solution:
According to the Pythagoras theorem,
[tex]Hypotenuse^2=Perpendicular^2+Base^2[/tex]
Using Pythagoras theorem, we get
[tex](\sqrt{113})^2=(9)^2+a^2[/tex]
[tex]113=81+a^2[/tex]
[tex]113-81=a^2[/tex]
[tex]32=a^2[/tex]
Taking square root on both sides.
[tex]\sqrt{32}=a[/tex]
It is only positive because the side length cannot be negative.
The length of the unknown leg in the right triangle is [tex]\sqrt{32}[/tex] mi.
Therefore, the correct option is B.