Respuesta :

Given:

The polynomial is:

[tex]-7-\dfrac{1}{2}x+x^2[/tex]

To find:

The standard form [tex]ax^2+bx+c[/tex] of given polynomial and then find the values of a,b,c.

Solution:

The given polynomial is:

[tex]P(x)=-7-\dfrac{1}{2}x+x^2[/tex]

After arranging the terms, it can be written as:

[tex]P(x)=x^2-\dfrac{1}{2}x-7[/tex]

On comparing this polynomial with [tex]ax^2+bx+c[/tex], we get

[tex]a=1,b=-\dfrac{1}{2},c=-7[/tex]

Therefore, the standard form of the given polynomial is [tex]x^2-\dfrac{1}{2}x-7[/tex] and the required values are [tex]a=1,b=-\dfrac{1}{2},c=-7[/tex].

ACCESS MORE