polynomial in the form ax^2+b+c
![polynomial in the form ax2bc class=](https://us-static.z-dn.net/files/d39/45333f57d1f5292f82327c07dad8296b.png)
Given:
The polynomial is:
[tex]-7-\dfrac{1}{2}x+x^2[/tex]
To find:
The standard form [tex]ax^2+bx+c[/tex] of given polynomial and then find the values of a,b,c.
Solution:
The given polynomial is:
[tex]P(x)=-7-\dfrac{1}{2}x+x^2[/tex]
After arranging the terms, it can be written as:
[tex]P(x)=x^2-\dfrac{1}{2}x-7[/tex]
On comparing this polynomial with [tex]ax^2+bx+c[/tex], we get
[tex]a=1,b=-\dfrac{1}{2},c=-7[/tex]
Therefore, the standard form of the given polynomial is [tex]x^2-\dfrac{1}{2}x-7[/tex] and the required values are [tex]a=1,b=-\dfrac{1}{2},c=-7[/tex].