Given:
The values of a linear function are [tex]F(-9)=8[/tex] and [tex]F(0)=1[/tex].
To find:
The linear function.
Solution:
If a linear function passes through two points, then the equation of the linear function is:
[tex]y-y_1=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
The values of a linear function are [tex]F(-9)=8[/tex] and [tex]F(0)=1[/tex]. It means the function passes through the points (-9,8) and (0,1). So, the equation of the linear function is:
[tex]y-8=\dfrac{1-8}{0-(-9)}(x-(-9))[/tex]
[tex]y-8=\dfrac{-7}{9}(x+9)[/tex]
[tex]y-8=\dfrac{-7}{9}(x)+\dfrac{-7}{9}(9)[/tex]
[tex]y-8=\dfrac{-7}{9}x-7[/tex]
Adding 8 on both sides, we get
[tex]y-8+8=\dfrac{-7}{9}x-7+8[/tex]
[tex]y=\dfrac{-7}{9}x+1[/tex]
Putting [tex]y=F(x)[/tex], we get
[tex]F(x)=\dfrac{-7}{9}x+1[/tex]
Therefore, the required linear function is [tex]F(x)=\dfrac{-7}{9}x+1[/tex].