Respuesta :

Given:

The values of a linear function are [tex]F(-9)=8[/tex] and [tex]F(0)=1[/tex].

To find:

The linear function.

Solution:

If a linear function passes through two points, then the equation of the linear function is:

[tex]y-y_1=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]

The values of a linear function are [tex]F(-9)=8[/tex] and [tex]F(0)=1[/tex]. It means the function passes through the points (-9,8) and (0,1). So, the equation of the linear function is:

[tex]y-8=\dfrac{1-8}{0-(-9)}(x-(-9))[/tex]

[tex]y-8=\dfrac{-7}{9}(x+9)[/tex]

[tex]y-8=\dfrac{-7}{9}(x)+\dfrac{-7}{9}(9)[/tex]

[tex]y-8=\dfrac{-7}{9}x-7[/tex]

Adding 8 on both sides, we get

[tex]y-8+8=\dfrac{-7}{9}x-7+8[/tex]

[tex]y=\dfrac{-7}{9}x+1[/tex]

Putting [tex]y=F(x)[/tex], we get

[tex]F(x)=\dfrac{-7}{9}x+1[/tex]

Therefore, the required linear function is [tex]F(x)=\dfrac{-7}{9}x+1[/tex].