Respuesta :

Answer:

Given function

  • h(x) = 2x - 1

#15 Find the inverse of h(x)

Substitute x with y and h(x) with x and solve for y:

  • x = 2y - 1
  • 2y = x + 1
  • y = 1/2x + 1/2

The inverse is:

  • h⁻¹(x) = 1/2x + 1/2

#16 The graph with both lines is attached.

The x- and y-intercepts of both functions have reversed values.

#17 Table of the inverse function  will contain same numbers with swapped domain and range.

Initial look is like this:

  • x        |  -3  |  -2  | -1  |  0  |    1  |  2  | 3
  • h⁻¹(x)  |  -1   |       | 0   |      |    1  |      | 2

The rest of the table is filled in by finding the values:

  • x        |  -3  |  -2    | -1  |  0   |  1  |  2   | 3
  • h⁻¹(x)  |  -1   | -0.5 |  0  | 0.5 |  1  | 1.5 | 2

Ver imagen mhanifa
Ver imagen mhanifa
ACCESS MORE