Answer:
[tex]Area = 4h^2-56h +144[/tex]
Step-by-step explanation:
Given
See attachment for complete question
Required: The base area.
From the question, we have the initial dimensions to be:
[tex]Length = 12[/tex]
[tex]Width = 12[/tex]
h inch were removed from each corner to form the new base. So, the dimension of the new base is:
[tex]Base\ Length = Length - h - h[/tex]
[tex]Base\ Length = Length - 2h[/tex]
[tex]Base\ Width = Width - h-h[/tex]
[tex]Base\ Width = Width - 2h[/tex]
The area of the base is calculated by multiplying the base dimensions
[tex]Area = Base\ Length * Base\ Width[/tex]
[tex]Area = [Length - 2h] * [Width - 2h][/tex]
[tex]Area = [12 - 2h] * [12 - 2h][/tex]
Expand
[tex]Area = 12[12 - 2h] -2h [12 - 2h][/tex]
[tex]Area = 144 - 28h -28h + 4h^2[/tex]
[tex]Area = 144 -56h + 4h^2[/tex]
Rewrite as:
[tex]Area = 4h^2-56h +144[/tex]