Answer:
(a) 100 fishes
(b) t = 10: 483 fishes
t = 20: 999 fishes
t = 30: 1168 fishes
(c)
[tex]P(\infty) = 1200[/tex]
Step-by-step explanation:
Given
[tex]P(t) =\frac{d}{1+ke^-{ct}}[/tex]
[tex]d = 1200\\k = 11\\c=0.2[/tex]
Solving (a): Fishes at t = 0
This gives:
[tex]P(0) =\frac{1200}{1+11*e^-{0.2*0}}[/tex]
[tex]P(0) =\frac{1200}{1+11*e^-{0}}[/tex]
[tex]P(0) =\frac{1200}{1+11*1}[/tex]
[tex]P(0) =\frac{1200}{1+11}[/tex]
[tex]P(0) =\frac{1200}{12}[/tex]
[tex]P(0) = 100[/tex]
Solving (a): Fishes at t = 10, 20, 30
[tex]t = 10[/tex]
[tex]P(10) =\frac{1200}{1+11*e^-{0.2*10}} =\frac{1200}{1+11*e^-{2}}\\\\P(10) =\frac{1200}{1+11*0.135}=\frac{1200}{2.485}\\\\P(10) =483[/tex]
[tex]t = 20[/tex]
[tex]P(20) =\frac{1200}{1+11*e^-{0.2*20}} =\frac{1200}{1+11*e^-{4}}\\\\P(20) =\frac{1200}{1+11*0.0183}=\frac{1200}{1.2013}\\\\P(20) =999[/tex]
[tex]t = 30[/tex]
[tex]P(30) =\frac{1200}{1+11*e^-{0.2*30}} =\frac{1200}{1+11*e^-{6}}\\\\P(30) =\frac{1200}{1+11*0.00247}=\frac{1200}{1.0273}\\\\P(30) =1168[/tex]
Solving (c): [tex]\lim_{t \to \infty} P(t)[/tex]
In (b) above.
Notice that as t increases from 10 to 20 to 30, the values of [tex]e^{-ct}[/tex] decreases
This implies that:
[tex]{t \to \infty} = {e^{-ct} \to 0}[/tex]
So:
The value of P(t) for large values is:
[tex]P(\infty) = \frac{1200}{1 + 11 * 0}[/tex]
[tex]P(\infty) = \frac{1200}{1 + 0}[/tex]
[tex]P(\infty) = \frac{1200}{1}[/tex]
[tex]P(\infty) = 1200[/tex]