Respuesta :
Hello!
[tex]\large\boxed{c_{5} = 136}[/tex]
We can begin by solving for c₃ given the equations:
c₃ = 3c₂ + 2c₁ - 2
c₃ = 3(2) + 2(4) - 2
Simplify:
c₃ = 6 + 8 - 2 = 12
We can now find the subsequent terms:
c₄ = 3(12) + 2(2) - 2 = 38
c₅ = 3(38) + 2(12) - 2 = 136
Now we have to,
find the required value of c₅.
Given that,
→ c₁ = 4
→ c₂ = 2
→ [tex] \sf {c_n = 3c_{n-1}+2c_{n-2}-2}[/tex]
Let's solve c₃ first,
→ 3c₂ + 2c₁ - 2
→ 3(2) + 2(4) - 2
→ 6 + 8 - 2 = 12
Then the value of c₃ is
→ [c₃ = 12]
Then find the value of c₄,
→ c₄ = 3(12) + 2(2) - 2
→ c₄ = {36 + 4} - 2
→ c₄ = 40 - 2
→ [c₄ = 38]
Next we can solve for c₅,
→ c₅ = 3(38) + 2(12) - 2
→ c₅ = {114 + 24} - 2
→ c₅ = 138 - 2
→ [c₅ = 136]
Hence, the value of c₅ is 136.