Given:
The expression is
[tex](-8)^3\cdot (-8)^4[/tex]
To find:
The expression in repeated multiplication form and then write the expression as a power.
Solution:
We have,
[tex](-8)^3\cdot (-8)^4[/tex]
The repeated multiplication form of this expression is
[tex]=[(-8)\cdot (-8)\cdot (-8)]\cdot [(-8)\cdot (-8)\cdot (-8)\cdot (-8)][/tex]
[tex]=(-8)\cdot (-8)\cdot (-8)\cdot (-8)\cdot (-8)\cdot (-8)\cdot (-8)[/tex]
Clearly, (-8) is multiplied seven times by itself. So,
[tex]=(-8)^7[/tex]
Therefore, the repeated multiplication form of the given expression is [tex](-8)\cdot (-8)\cdot (-8)\cdot (-8)\cdot (-8)\cdot (-8)\cdot (-8)[/tex] and the expression as single power is [tex](-8)^7[/tex].