The roots of x^2 + (1 - k).x+k-3 = 0 are real for all real values of k
The equation is given as:
x^2 + (1 - k).x+k-3 = 0
For an equation to have real root, then the following must be true:
[tex]b^2 \ge 4ac[/tex]
In x^2 + (1 - k).x+k-3 = 0, we have:
a = 1
b = 1 - k
c = k - 3
So, we have:
[tex](1 - k)^2 \ge 4 * 1 * (k - 3)[/tex]
Evaluate
[tex]1 - 2k + k^2 \ge 4k - 12[/tex]
Collect like terms
[tex]k^2 - 2k - 4k + 1 + 12 \ge 0[/tex]
[tex]k^2 - 6k + 13 \ge 0[/tex]
Using a graphing calculator, the value of k is all real numbers
Hence, the roots of x^2 + (1 - k).x+k-3 = 0 are real for all real values of k
Read more about real values at:
https://brainly.com/question/6499629