Respuesta :

The roots of x^2 + (1 - k).x+k-3 = 0 are real for all real values of k

The equation is given as:

x^2 + (1 - k).x+k-3 = 0

For an equation to have real root, then the following must be true:

[tex]b^2 \ge 4ac[/tex]

In x^2 + (1 - k).x+k-3 = 0, we have:

a = 1

b = 1 - k

c = k - 3

So, we have:

[tex](1 - k)^2 \ge 4 * 1 * (k - 3)[/tex]

Evaluate

[tex]1 - 2k + k^2 \ge 4k - 12[/tex]

Collect like terms

[tex]k^2 - 2k - 4k + 1 + 12 \ge 0[/tex]

[tex]k^2 - 6k + 13 \ge 0[/tex]

Using a graphing calculator, the value of k is all real numbers

Hence, the roots of x^2 + (1 - k).x+k-3 = 0 are real for all real values of k

Read more about real values at:

https://brainly.com/question/6499629

ACCESS MORE
EDU ACCESS
Universidad de Mexico