35°
Ух
25°
у= [ ? 10
Enter

Step-by-step explanation:
✰ [tex] \underline{ \underline{ \large{ \tt{ \:T \:O \: \: F \: I \: N \: D}}} }: [/tex]
✰ [tex] \underline{ \underline{ \large{ \tt{S \: O \: L \: U \: T \: I \: O\: N}}}} : [/tex]
Basically there are two ways to find out the value of y. I'm gonna show you the both ways.
First one :
[tex] \large{ \tt{x + 25 \degree + 35 \degree = 180 \degree}} \text{(Sum \: of \: angles \: of \: a \: triangle)}[/tex]
⇾ [tex] \large{ \tt{x + 60 \degree = 180 \degree}}[/tex]
⇾ [tex] \large{ \tt{x = 180 \degree - 60 \degree}}[/tex]
⇾ [tex] \large{ \tt{x = 120 \degree}}[/tex]
[tex] \large{ \tt{x + y = 180 \degree}} \text{(Sum \: of \: angle \: in \: a \: straight \: line})[/tex]
⤑ [tex] \large{ \tt{120 \degree + y = 180 \degree}}[/tex]
⤑ [tex] \large{ \tt{y = 180 \degree - 120 \degree}}[/tex]
⤑ [tex] \boxed{ \large{ \tt{y = 60 \degree}}}[/tex]
Another way :
[tex] \large{ \tt{y = 35 \degree + 25 \degree}} [/tex] ( Exterior angle is equal to the sum of two non - adjacent interior angles )
↦ [tex] \boxed{ \large{ \tt{y = 60 \degree}}}[/tex]
➝ [tex] \large{ \boxed{ \boxed{ \tt{Our \: Final \: Answer : \underline{y = 60 \degree}}}}}[/tex]
⋆ Hope I helped ! ⋆
Have a wonderful day / night ! ♪
Let me know if you have any questions regarding the answer ! ツ
♡ [tex] \underline{ \underline{ \mathfrak{Carry \: On \: Learning}}}[/tex] !! ✎
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁