Respuesta :

lukyo
If you're using the app, try seeing this answer through your browser:  https://brainly.com/question/2262134

_______________


Let  [tex]\mathsf{\theta=sin^{-1}(x)\qquad\qquad-\dfrac{\pi}{2}\ \textless \ \theta\ \textless \ \dfrac{\pi}{2}.}[/tex]

(that is the range of the inverse sine function).


So,

[tex]\mathsf{sin\,\theta=sin\!\left[sin^{-1}(x)\right]}\\\\ \mathsf{sin\,\theta=x\qquad\quad(i)}[/tex]


Square both sides:

[tex]\mathsf{sin^2\,\theta=x^2\qquad\qquad(but~sin^2\,\theta=1-cos^2\,\theta)}\\\\ \mathsf{1-cos^2\,\theta=x^2}\\\\ \mathsf{1-x^2=cos^2\,\theta}\\\\ \mathsf{cos^2\,\theta=1-x^2}[/tex]


Since [tex]\mathsf{-\dfrac{\pi}{2}\ \textless \ \theta\ \textless \ \dfrac{\pi}{2},}[/tex] then [tex]\mathsf{cos\,\theta}[/tex] is positive. So take the positive square root and you get

[tex]\mathsf{cos\,\theta=\sqrt{1-x^2}\qquad\quad(ii)}[/tex]


Then,

[tex]\mathsf{tan\,\theta=\dfrac{sin\,\theta}{cos\,\theta}}\\\\\\ \mathsf{tan\,\theta=\dfrac{x}{\sqrt{1-x^2}}}\\\\\\\\ \therefore~~\mathsf{tan\!\left[sin^{-1}(x)\right]=\dfrac{x}{\sqrt{1-x^2}}\qquad\qquad -1\ \textless \ x\ \textless \ 1.}[/tex]


I hope this helps. =)


Tags:  inverse trigonometric function sin tan arcsin trigonometry

ACCESS MORE