If you're using the app, try seeing this answer through your browser: https://brainly.com/question/2262134
_______________
Let [tex]\mathsf{\theta=sin^{-1}(x)\qquad\qquad-\dfrac{\pi}{2}\ \textless \ \theta\ \textless \ \dfrac{\pi}{2}.}[/tex]
(that is the range of the inverse sine function).
So,
[tex]\mathsf{sin\,\theta=sin\!\left[sin^{-1}(x)\right]}\\\\
\mathsf{sin\,\theta=x\qquad\quad(i)}[/tex]
Square both sides:
[tex]\mathsf{sin^2\,\theta=x^2\qquad\qquad(but~sin^2\,\theta=1-cos^2\,\theta)}\\\\
\mathsf{1-cos^2\,\theta=x^2}\\\\
\mathsf{1-x^2=cos^2\,\theta}\\\\
\mathsf{cos^2\,\theta=1-x^2}[/tex]
Since [tex]\mathsf{-\dfrac{\pi}{2}\ \textless \ \theta\ \textless \ \dfrac{\pi}{2},}[/tex] then [tex]\mathsf{cos\,\theta}[/tex] is positive. So take the positive square root and you get
[tex]\mathsf{cos\,\theta=\sqrt{1-x^2}\qquad\quad(ii)}[/tex]
Then,
[tex]\mathsf{tan\,\theta=\dfrac{sin\,\theta}{cos\,\theta}}\\\\\\
\mathsf{tan\,\theta=\dfrac{x}{\sqrt{1-x^2}}}\\\\\\\\
\therefore~~\mathsf{tan\!\left[sin^{-1}(x)\right]=\dfrac{x}{\sqrt{1-x^2}}\qquad\qquad -1\ \textless \ x\ \textless \ 1.}[/tex]
I hope this helps. =)
Tags: inverse trigonometric function sin tan arcsin trigonometry