Given isosceles right triangle CDE with m∠D = 90, sin C = sin D

Answer:True
Step-by-step explanation:
Given
[tex]\angle D=90^{\circ}[/tex]
For isosceles triangle , CD=DE (x=y)
from figure,
[tex]\sin C=\dfrac{y}{H}\\\\\sin D=\dfrac{x}{H}\\\\\text{CD=DE}\\\\\therefore \sin C=\sin D=\dfrac{x}{H}=\dfrac{y}{H}[/tex]
Thus, the given statement is true