Write the fifteenth term of the binomial expansion of (a^2+b)^20

Answer:
The fifteenth term of the binomial expansion of [tex](a+b)^{20}[/tex] is [tex]38760\cdot a^{6}\cdot b^{14}[/tex].
Step-by-step explanation:
Let be a binomial of the form [tex](a+b)^{n}[/tex], where [tex]a, b\in \mathbb{R}[/tex] and [tex]n\,\in\mathbb{N}^{+}[/tex]. The expansion of this polynomial is defined below:
[tex](a+b)^{n} = \Sigma\limits_{k=0}^{n}\,\frac{n!}{k!\cdot (n-k)!}\cdot (a^{n-k}\cdot b^{k})[/tex] (1)
Where:
[tex]n[/tex] - Number of terms of the expanded polynomial.
[tex]k[/tex] - Index associated to [tex]k[/tex]-th term of the expanded polynomial.
For all [tex]n[/tex]-th binomial, we a sum of [tex]n+1[/tex] terms. If the given binomial has a term of [tex]20[/tex], then we have 21 terms and the fifteenth term of the polynomial corresponds to the [tex]14[/tex]-th term. Then, the fifteenth term of the binomial is:
[tex]c_{14} = \frac{20!}{14!\cdot 6!}\cdot (a^{6}\cdot b^{14})[/tex]
[tex]c_{14} = 38760\cdot a^{6}\cdot b^{14}[/tex]
The fifteenth term of the binomial expansion of [tex](a+b)^{20}[/tex] is [tex]38760\cdot a^{6}\cdot b^{14}[/tex].