Respuesta :
Answer:
[tex] - 39xy + 12 {y}^{2} [/tex]
Step-by-step explanation:
1) Simplify 6x × 2y to to 12xy.
[tex]12xy - 3xy - 24xy \times 2 + 12 {y}^{2} [/tex]
2) Simplify 24xy × 2 to 48xy.
[tex]12xy - 3xy - 48xy + 12 {y}^{2} [/tex]
3) Collect like terms.
[tex](12xy - 3xy - 48xy) + 12 {y}^{2} [/tex]
4) Simplify.
[tex] - 39xy + 12 {y}^{2} [/tex]
Thus, The answer is -39xy + 12y².
The factored form of the expression is 3y(x-4y)(2x-1)
Factoring of expression
The greatest common factor is the term that can divide all the terms of an expression.
Given the expression:
6x^2y − 3xy − 24xy^2 + 12y^2
Factor out the GCF to have:
3xy(2x - 1) - 12y^2(2x - 1)
Group the GCF and the expression in parenthesis to have:
(3xy-12y^2)(2x-1)
3y(x-4y)(2x-1)
Hence the factored form of the expression is 3y(x-4y)(2x-1)
Learn more on factoring here: https://brainly.com/question/24734894