Answer:
[tex]18.18\ \text{m/s}[/tex]
[tex]6.82\ \text{m/s}[/tex]
Explanation:
[tex]m_1[/tex] = Mass of large object = 8 kg
[tex]m_2[/tex] = Mass of smaller object = 3 kg
When large mass is moving
[tex]u_1[/tex] = 25 m/s
[tex]u_2[/tex] = 0
For completely inelastic collision we have the relation
[tex]m_1u_1+m_2u_2=(m_1+m_2)v\\\Rightarrow v=\dfrac{m_1u_1+m_2u_2}{m_1+m_2}\\\Rightarrow v=\dfrac{8\times 25+3\times 0}{8+3}\\\Rightarrow v=18.18\ \text{m/s}[/tex]
Speed of the combined mass when the larger object is moving is [tex]18.18\ \text{m/s}[/tex]
When smaller mass is moving
[tex]u_1[/tex] = 0
[tex]u_2[/tex] = 25 m/s
[tex]v=\dfrac{m_1u_1+m_2u_2}{m_1+m_2}\\\Rightarrow v=\dfrac{8\times 0+3\times 25}{8+3}\\\Rightarrow v=6.82\ \text{m/s}[/tex]
Speed of the combined mass when the smaller object is moving is [tex]6.82\ \text{m/s}[/tex]