Respuesta :
3/8y = 9/24 since 3*3=9 and 8*3=24
4 = 64/16 since 16*4=64
3z/x = 9z/3x since 3z*3=9z and x*3=3x
4 = 64/16 since 16*4=64
3z/x = 9z/3x since 3z*3=9z and x*3=3x
Answer:
Part 1) [tex]\frac{1}{2} =\frac{2}{24}[/tex]
[tex]\frac{2}{24}[/tex] is [tex]\frac{1}{12}[/tex] in reduced form .
[tex]\frac{1}{2} =\frac{2}{24}[/tex]
[tex]\frac{1}{2}\neq\frac{1}{12}[/tex]
These are not proportionate to each other
Part 2) [tex]\frac{3}{8}y =\frac{9}{24}y[/tex]
[tex]\frac{9}{24}y[/tex] is [tex]\frac{3}{8}y[/tex] in reduced form .
So, [tex]\frac{3}{8}y =\frac{9}{24}y[/tex]
So, these are proportionate to each other .
Part 3) [tex]4 =\frac{64}{16}[/tex]
[tex]\frac{64}{16}[/tex] is [tex]\frac{4}{1}[/tex] in reduced form .
So, [tex]4 =\frac{64}{16}[/tex]
So, these are proportionate to each other .
Part 4) [tex]\frac{x}{y} =\frac{y}{x}[/tex]
Since we cannot reduce [tex]\frac{x}{y}[/tex] into [tex]\frac{y}{x}[/tex] and vice versa.
So, These are not proportionate to each other
Part 5) [tex]\frac{3z}{x} =\frac{9z}{3x}[/tex]
[tex]\frac{9z}{3x}[/tex] is [tex]\frac{3z}{x}[/tex] in reduced form .
So, [tex]\frac{3z}{x} =\frac{9z}{3x}[/tex]
So, these are proportionate to each other .