Hagrid
contestada

Given the triangle below, which of the following is a correct statement?


A. csc right triangle B right triangle equals fraction 3 over 2

B. csc right triangle C right triangle equals fraction 3 over 2

C. csc right triangle B right triangle equals fraction 6 over 5

D. csc right triangle C right triangle equals fraction 5 over 6

Given the triangle below which of the following is a correct statement A csc right triangle B right triangle equals fraction 3 over 2 B csc right triangle C rig class=

Respuesta :

we know that

The Cosecant  is a trigonometric function that is the reciprocal of the sine

so

[tex]csc(x)=\frac{1}{sin(x)}[/tex]

In this problem

Find the csc(B)

[tex]sin(B)=\frac{AC}{BC}[/tex]

substitute the values

[tex]sin(B)=\frac{5}{6}[/tex]

so

[tex]csc(B)=\frac{6}{5}[/tex]

Find the csc(C)

[tex]sin(C)=\frac{AB}{BC}[/tex]  

substitute the values

[tex]sin(C)=\frac{4}{6}[/tex]

Simplify

[tex]sin(C)=\frac{2}{3}[/tex]

so

[tex]csc(C)=\frac{3}{2}[/tex]

Statements

case A) csc right triangle B right triangle equals fraction [tex]3[/tex] over [tex]2[/tex]

The statement is false

Because, the value of csc(B) equals fraction [tex]6[/tex] over [tex]5[/tex]

case B) csc right triangle C right triangle equals fraction [tex]3[/tex] over [tex]2[/tex]

The statement is true

See the procedure

case C) csc right triangle B right triangle equals fraction [tex]6[/tex] over [tex]5[/tex]

The statement is true

See the procedure

case D) csc right triangle C right triangle equals fraction [tex]5[/tex] over [tex]6[/tex]

The statement is false

Because, Because, the value of csc(C) equals fraction [tex]3[/tex] over [tex]2[/tex]


ACCESS MORE