we know that
The Cosecant is a trigonometric function that is the reciprocal of the sine
so
[tex]csc(x)=\frac{1}{sin(x)}[/tex]
In this problem
Find the csc(B)
[tex]sin(B)=\frac{AC}{BC}[/tex]
substitute the values
[tex]sin(B)=\frac{5}{6}[/tex]
so
[tex]csc(B)=\frac{6}{5}[/tex]
Find the csc(C)
[tex]sin(C)=\frac{AB}{BC}[/tex]
substitute the values
[tex]sin(C)=\frac{4}{6}[/tex]
Simplify
[tex]sin(C)=\frac{2}{3}[/tex]
so
[tex]csc(C)=\frac{3}{2}[/tex]
Statements
case A) csc right triangle B right triangle equals fraction [tex]3[/tex] over [tex]2[/tex]
The statement is false
Because, the value of csc(B) equals fraction [tex]6[/tex] over [tex]5[/tex]
case B) csc right triangle C right triangle equals fraction [tex]3[/tex] over [tex]2[/tex]
The statement is true
See the procedure
case C) csc right triangle B right triangle equals fraction [tex]6[/tex] over [tex]5[/tex]
The statement is true
See the procedure
case D) csc right triangle C right triangle equals fraction [tex]5[/tex] over [tex]6[/tex]
The statement is false
Because, Because, the value of csc(C) equals fraction [tex]3[/tex] over [tex]2[/tex]