Respuesta :
Answer:
16.55
Step-by-step explanation:
[tex]\sqrt{7} ^ {2} +15^{2}[/tex]
Answer:
[tex]\boxed {\boxed {\sf \sqrt {274} \ or \ 16.55 \ inches}}[/tex]
Step-by-step explanation:
The sides of a right triangle can be found using Pythagorean Theorem.
[tex]a^2+b^2=c^2[/tex]
where a and b are legs and c is the hypotenuse.
In this triangle, the legs are 15 and 7, so we can substitute those values in for a and b.
[tex](15)^2+(7)^2=c^2[/tex]
Solve the exponents.
- 15²=15*15=225
- 7²=7*7=49
[tex]225+49=c^2[/tex]
Add.
[tex]274=c^2[/tex]
Since we are solving c, we have to isolate the variable. It is being squared and the inverse of a square is a square root. Take the square root of both sides.
[tex]\sqrt {274}=\sqrt {c^2}[/tex]
[tex]\sqrt {274}=c \\ $16.5529453572= c[/tex]
Let's round to the nearest hundredth. The 2 in the thousandth place tells us to leave the 5.
[tex]16.55 \approx c[/tex]
The hypotenuse is approximately √274 or 16.55 inches
Otras preguntas
