Respuesta :

Answer:

[tex]f_{ave}[/tex] = [tex]{\frac{10 }{3\pi }[/tex]

Step-by-step explanation:

To find - Find the average value fave of the function f on the given interval. f(x) = 5 sec²(x/6), [0, 3[tex]\pi[/tex]/2]

Proof -

We know that,

Average value of f in the interval [a, b] is -

[tex]f_{ave}[/tex] = [tex]\frac{1}{b - a}\int\limits^b_a {f(x)} \, dx[/tex]

Now,

Here a = 0, b = [tex]\frac{3\pi }{2}[/tex], f(x) = [tex]5sec^{2}(\frac{x}{6} )[/tex]

Now,

[tex]f_{ave}[/tex] = [tex]\frac{1}{\frac{3\pi }{2} - 0}\int\limits^{\frac{3\pi }{2} }_0 {5sec^2 ({\frac{x}{6} }) } \, dx[/tex]

      = [tex]{\frac{2 }{3\pi }}\int\limits^{\frac{3\pi }{2} }_0 {5sec^2 ({\frac{x}{6} }) } \, dx[/tex]

      = [tex]{\frac{10 }{3\pi }}\int\limits^{\frac{3\pi }{2} }_0 {sec^2 ({\frac{x}{6} }) } \, dx[/tex]

      = [tex]{\frac{10 }{3\pi }}[\ {tan({\frac{x}{6} }) }|^{\frac{3\pi }{2} }_0 \, ][/tex]

      = [tex]{\frac{10 }{3\pi }}[\ {tan({\frac{x}{6} }) - tan({0) } \, ][/tex]

      = [tex]{\frac{10 }{3\pi }}[ {1 - 0 } ][/tex]

      = [tex]{\frac{10 }{3\pi }[/tex]

⇒[tex]f_{ave}[/tex] = [tex]{\frac{10 }{3\pi }[/tex]

RELAXING NOICE
Relax