Answer:
[tex]f_{ave}[/tex] = [tex]{\frac{10 }{3\pi }[/tex]
Step-by-step explanation:
To find - Find the average value fave of the function f on the given interval. f(x) = 5 sec²(x/6), [0, 3[tex]\pi[/tex]/2]
Proof -
We know that,
Average value of f in the interval [a, b] is -
[tex]f_{ave}[/tex] = [tex]\frac{1}{b - a}\int\limits^b_a {f(x)} \, dx[/tex]
Now,
Here a = 0, b = [tex]\frac{3\pi }{2}[/tex], f(x) = [tex]5sec^{2}(\frac{x}{6} )[/tex]
Now,
[tex]f_{ave}[/tex] = [tex]\frac{1}{\frac{3\pi }{2} - 0}\int\limits^{\frac{3\pi }{2} }_0 {5sec^2 ({\frac{x}{6} }) } \, dx[/tex]
= [tex]{\frac{2 }{3\pi }}\int\limits^{\frac{3\pi }{2} }_0 {5sec^2 ({\frac{x}{6} }) } \, dx[/tex]
= [tex]{\frac{10 }{3\pi }}\int\limits^{\frac{3\pi }{2} }_0 {sec^2 ({\frac{x}{6} }) } \, dx[/tex]
= [tex]{\frac{10 }{3\pi }}[\ {tan({\frac{x}{6} }) }|^{\frac{3\pi }{2} }_0 \, ][/tex]
= [tex]{\frac{10 }{3\pi }}[\ {tan({\frac{x}{6} }) - tan({0) } \, ][/tex]
= [tex]{\frac{10 }{3\pi }}[ {1 - 0 } ][/tex]
= [tex]{\frac{10 }{3\pi }[/tex]
⇒[tex]f_{ave}[/tex] = [tex]{\frac{10 }{3\pi }[/tex]