Respuesta :

F(3b,2b)          G(b,0)
midpoint of GF would be [(x1+x2)/2  ,   (y1+y2)/2]
   
                                       = [4b/2     ,     2b/2]
                                       =  [2b,   b]
Therefore C is the answer.



Answer:

C)(2b,b)

Step-by-step explanation:

We are given that a quadrilateral EFGH whose coordinates are E(2b,b),F(3b,2b),G(b,0) and H(0,0).

We have to find the midpoint of GF.

Midpoint formula :

[tex]x=\frac{x_1+x_2}{2},y=\frac{y_1+y_2}{2}[/tex]

We have [tex]x_2=3b,x_1=b,y_2=2b,y_1=0[/tex]

Using the formula

Then, we get

Midpoint of GF,[tex]x=\frac{3b+b}{2}=2b, y=\frac{2b+0}{2}=b[/tex]

Hence, the midpoint of GF=(2b,b)

Answer:C)(2b,b)

ACCESS MORE