Respuesta :

frika

Since [tex]\triangle ABD\sim \triangle BCD,[/tex] the corresponding sides are proportional:

[tex]\dfrac{AB}{BC}=\dfrac{BD}{CD}=\dfrac{AD}{BD}.[/tex]

You are given that

  • [tex]BC=m;[/tex]
  • [tex]DC=7;[/tex]
  • [tex]AD=11.[/tex]

Thus,

[tex]\dfrac{AB}{m}=\dfrac{BD}{7}=\dfrac{11}{BD}.[/tex]

From the second equality [tex]\dfrac{BD}{7}=\dfrac{11}{BD}[/tex] you have that

[tex]BD^2=7\cdot 11=77,\\ \\BD=\sqrt{77}.[/tex]

Now consider right triangle BDC (with right angle D). By the Pythagorean theorem,

[tex]BC^2=BD^2+DC^2,\\ \\m^2=(\sqrt{77})^2+7^2=77+49=126,\\ \\m=\sqrt{126}.[/tex]

Answer: correct choice is A.

Answer:

(A)[tex]\sqrt{126}[/tex]

Step-by-step explanation:

Since, it is given that ΔABD is similar to ΔBCD, then

[tex]\frac{AB}{BC}=\frac{BD}{CD}=\frac{AD}{BD}[/tex]

[tex]\frac{AB}{m}=\frac{BD}{7}=\frac{11}{BD}[/tex]

Taking second and third equality, we get

[tex](BD)^{2}=77[/tex]

⇒[tex]BD=\sqrt{77}[/tex]

Now, from ΔBDC, using the Pythagoras theorem, we get

[tex](BC)^{2}=(BD)^{2}+(DC)^2[/tex]

[tex]m^{2}=(7)^2+(\sqrt{77})^2[/tex]

[tex]m^2=49+77[/tex]

[tex]m^2=126[/tex]

[tex]m=\sqrt{126}[/tex].

ACCESS MORE