What is the value of m In the figure below in this diagram
![What is the value of m In the figure below in this diagram class=](https://us-static.z-dn.net/files/dca/45bcbf5cda1a0a10d8e879799e05aa7e.png)
Since [tex]\triangle ABD\sim \triangle BCD,[/tex] the corresponding sides are proportional:
[tex]\dfrac{AB}{BC}=\dfrac{BD}{CD}=\dfrac{AD}{BD}.[/tex]
You are given that
Thus,
[tex]\dfrac{AB}{m}=\dfrac{BD}{7}=\dfrac{11}{BD}.[/tex]
From the second equality [tex]\dfrac{BD}{7}=\dfrac{11}{BD}[/tex] you have that
[tex]BD^2=7\cdot 11=77,\\ \\BD=\sqrt{77}.[/tex]
Now consider right triangle BDC (with right angle D). By the Pythagorean theorem,
[tex]BC^2=BD^2+DC^2,\\ \\m^2=(\sqrt{77})^2+7^2=77+49=126,\\ \\m=\sqrt{126}.[/tex]
Answer: correct choice is A.
Answer:
(A)[tex]\sqrt{126}[/tex]
Step-by-step explanation:
Since, it is given that ΔABD is similar to ΔBCD, then
[tex]\frac{AB}{BC}=\frac{BD}{CD}=\frac{AD}{BD}[/tex]
[tex]\frac{AB}{m}=\frac{BD}{7}=\frac{11}{BD}[/tex]
Taking second and third equality, we get
[tex](BD)^{2}=77[/tex]
⇒[tex]BD=\sqrt{77}[/tex]
Now, from ΔBDC, using the Pythagoras theorem, we get
[tex](BC)^{2}=(BD)^{2}+(DC)^2[/tex]
[tex]m^{2}=(7)^2+(\sqrt{77})^2[/tex]
[tex]m^2=49+77[/tex]
[tex]m^2=126[/tex]
[tex]m=\sqrt{126}[/tex].