Respuesta :

Answer:

y = [tex]-\frac{3}{2} x - 9[/tex]

Step-by-step explanation:

The given function h(x) = [tex]-\frac{2}{3} x + 6[/tex]

To find the inverse function, we have to do the following steps:

Step 1: Replace h(x) by "x" and "x" by "y"

x = [tex]-\frac{2}{3} y + 6[/tex]

Step 2: Write the function y interms of x.

Subtract 6 from both sides, we get

[tex]x - 6 = -\frac{2}{3} y + 6 - 6[/tex]

[tex]x - 6 = -\frac{2}{3} y[/tex]

Multiply both sides by the reciprocal of -2/3.

The reciprocal of -2/3 is -3/2.

[tex]-\frac{3}{2} (x - 6) = -\frac{3}{2} *-\frac{2}{3} *y[/tex]

y = [tex]-\frac{3}{2} x -\frac{3}{2} *6[/tex]

[tex]y = -\frac{3}{2} x - 9[/tex]

The inverse function y = [tex]-\frac{3}{2} x - 9[/tex]