Answer:
[tex]\frac{3x + 8}{36 - 2x} / \frac{27x^2 + 72x}{3x^2 - 27} = \frac{(x - 3)(x+3)}{6x(18 - x)}[/tex]
Step-by-step explanation:
Given
[tex]\frac{3x + 8}{36 - 2x} / \frac{27x^2 + 72x}{3x^2 - 27}[/tex]
Required
Solve
Change / to *
[tex]\frac{3x + 8}{36 - 2x} * \frac{3x^2 - 27}{27x^2 + 72x}[/tex]
Factor out 3
[tex]\frac{3x + 8}{36 - 2x} * \frac{3(x^2 - 9)}{3(9x^2 + 24x)}[/tex]
[tex]\frac{3x + 8}{36 - 2x} * \frac{(x^2 - 9)}{(9x^2 + 24x)}[/tex]
Factorize:
[tex]\frac{3x + 8}{36 - 2x} * \frac{(x^2 - 9)}{3x(3x + 8)}[/tex]
Cancel out 3x + 8
[tex]\frac{1}{36 - 2x} * \frac{(x^2 - 9)}{3x}[/tex]
Factorize:
[tex]\frac{1}{2(18 - x)} * \frac{(x^2 - 9)}{3x}[/tex]
Combine
[tex]\frac{x^2 - 9}{2*3x(18 - x)}[/tex]
[tex]\frac{x^2 - 9}{6x(18 - x)}[/tex]
Express the numerator as a difference of two squares
[tex]\frac{(x - 3)(x+3)}{6x(18 - x)}[/tex]
Hence:
[tex]\frac{3x + 8}{36 - 2x} / \frac{27x^2 + 72x}{3x^2 - 27} = \frac{(x - 3)(x+3)}{6x(18 - x)}[/tex]