Question
The hypotenuse of an isosceles right triangle is 11 centimeters longer than either of its legs. find the exact length of each side.
Answer:
[tex]Hypotenuse:37.56[/tex]
[tex]Other\ Legs: 26.56[/tex]
Step-by-step explanation:
Let the hypotenuse be y and the other legs be x.
So:
[tex]y = 11 + x[/tex]
Required
Determine the exact dimension of the triangle
Using Pythagoras theorem;
[tex]y^2 = x^2 + x^2[/tex]
[tex]y^2 = 2x^2[/tex]
This gives:
[tex](11+x)^2 = 2x^2[/tex]
Open bracket
[tex]121 + 22x + x^2= 2x^2[/tex]
Collect like terms
[tex]2x^2 - x^2 -22x - 121 = 0[/tex]
[tex]x^2 -22x - 121 = 0[/tex]
Using quadratic formula:
[tex]x = \frac{-b\±\sqrt{b^2 - 4ac}}{2a}[/tex]
[tex]x = \frac{-(-22)\±\sqrt{(-22)^2 - 4*1*-121}}{2*1}[/tex]
[tex]x = \frac{-(-22)\±\sqrt{968}}{2*1}[/tex]
[tex]x = \frac{22\±31.11}{2}[/tex]
Split
[tex]x = \frac{22+31.11}{2}\ or\ x = \frac{22-31.11}{2}\\[/tex]
[tex]x = \frac{53.11}{2}\ or\ x = \frac{-9.11}{2}[/tex]
x can not be negative.
So:
[tex]x = \frac{53.11}{2}[/tex]
[tex]x = 26.56[/tex]
Recall that:
[tex]y = 11 + x[/tex]
[tex]y = 11 + 26.56[/tex]
[tex]y = 37.56[/tex]
Hence, the dimensions are:
[tex]Hypotenuse:37.56[/tex]
[tex]Other\ Legs: 26.56[/tex]