The hypotenuse of an isosceles right triangle is centimeters longer than either of its legs. Find the exact length of each side.​ (Hint: An isosceles right triangle is a right triangle whose legs are the same​ length.)

Respuesta :

Question

The hypotenuse of an isosceles right triangle is 11 centimeters longer than either of its legs. find the exact length of each side.

Answer:

[tex]Hypotenuse:37.56[/tex]

[tex]Other\ Legs: 26.56[/tex]

Step-by-step explanation:

Let the hypotenuse be y and the other legs be x.

So:

[tex]y = 11 + x[/tex]

Required

Determine the exact dimension of the triangle

Using Pythagoras theorem;

[tex]y^2 = x^2 + x^2[/tex]

[tex]y^2 = 2x^2[/tex]

This gives:

[tex](11+x)^2 = 2x^2[/tex]

Open bracket

[tex]121 + 22x + x^2= 2x^2[/tex]

Collect like terms

[tex]2x^2 - x^2 -22x - 121 = 0[/tex]

[tex]x^2 -22x - 121 = 0[/tex]

Using quadratic formula:

[tex]x = \frac{-b\±\sqrt{b^2 - 4ac}}{2a}[/tex]

[tex]x = \frac{-(-22)\±\sqrt{(-22)^2 - 4*1*-121}}{2*1}[/tex]

[tex]x = \frac{-(-22)\±\sqrt{968}}{2*1}[/tex]

[tex]x = \frac{22\±31.11}{2}[/tex]

Split

[tex]x = \frac{22+31.11}{2}\ or\ x = \frac{22-31.11}{2}\\[/tex]

[tex]x = \frac{53.11}{2}\ or\ x = \frac{-9.11}{2}[/tex]

x can not be negative.

So:

[tex]x = \frac{53.11}{2}[/tex]

[tex]x = 26.56[/tex]

Recall that:

[tex]y = 11 + x[/tex]

[tex]y = 11 + 26.56[/tex]

[tex]y = 37.56[/tex]

Hence, the dimensions are:

[tex]Hypotenuse:37.56[/tex]

[tex]Other\ Legs: 26.56[/tex]