On a coordinate plane, quadrilateral J K L M with diagonals is shown. Point J is at (4, 5), point K is at (5, 1), point L is at (1, 2), and point M is at (1, 5). Which statement proves that quadrilateral JKLM is a kite?

Respuesta :

Answer:

[tex]LM = MJ = 3[/tex]

[tex]JK = KL = \sqrt{17[/tex]

Step-by-step explanation:

Given

[tex]J = (4,5)[/tex]

[tex]K = (5,1)[/tex]

[tex]L = (1,2)[/tex]

[tex]M = (1,5)[/tex]

Required

Prove it's a kite

Start by calculating the length of the sides of the kite using:

[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 -y_2)^2}[/tex]

[tex]JK = \sqrt{(4 - 5)^2 + (5 -1)^2} = \sqrt{17}[/tex]

[tex]KL = \sqrt{(5 - 1)^2 + (1 -2)^2} = \sqrt{17}[/tex]

[tex]LM = \sqrt{(1 - 1)^2 + (2 -5)^2} = \sqrt{9} =3[/tex]

[tex]MJ = \sqrt{(1 - 4)^2 + (5 -5)^2} =\sqrt{9} = 3[/tex]

Hence:

[tex]LM = MJ = 3[/tex]

[tex]JK = KL = \sqrt{17[/tex]

proves that it is a kite

Answer:

B)  LM = JM = 3 and JK = LK = [tex]\sqrt{17}[/tex]

Step-by-step explanation:

Edge 2021

Good Luck :)

ACCESS MORE