Answer: 165 boxes
Step-by-step explanation:
Given
The dimension of the bigger box is [tex]1\ \frac{1}{4}\times 2\ \frac{3}{4}\times \frac{3}{4}\ ft^3[/tex]
the dimension of the smaller box is [tex]\frac{1}{4}\times \frac{1}{4}\times \frac{1}{4}\ ft^3[/tex]
The volume of the large box
[tex]\Rightarrow V_1=\dfrac{5}{4}\times \dfrac{11}{4}\times \dfrac{3}{4}=\dfrac{165}{64}\ ft^3[/tex]
The volume of the small box
[tex]\Rightarrow V_o=\dfrac{1}{4}\times\dfrac{1}{4}\times \dfrac{1}{4}=\dfrac{1}{64}\ ft^3[/tex]
Suppose there are n small boxes
[tex]\Rightarrow n=\dfrac{V_1}{V_o}[/tex]
[tex]\Rightarrow n=\dfrac{\frac{165}{64}}{\frac{1}{64}}=165\ \text{boxes}[/tex]