Respuesta :

Answer:

[tex]\huge\boxed{ f^{-1}(x) = \sqrt[3]{-x-9}}[/tex]

Step-by-step explanation:

[tex]f(x) = -x^3-9[/tex]

Put f(x) = y

[tex]y = -x^3-9[/tex]

Interchange x and y

[tex]x = -y^3-9[/tex]

Solve for y

[tex]x = -y^3-9[/tex]

Add 9 to both sides

[tex]-y^3 = x+9[/tex]

Divide both sides by -1

[tex]y^3 = -x-9[/tex]

Take cube root to both sides

[tex]y = \sqrt[3]{-x-9}[/tex]

Put [tex]y = f^{-1}(x)[/tex]

[tex]\boxed{f^{-1}(x) = \sqrt[3]{-x-9}}[/tex]

[tex]\rule[225]{225}{2}[/tex]

Hope this helped!

~AH1807

The inverse function of the given function is  [tex]f^{-1} (x)[/tex]=∛-x-9.

The given function is f(x)=-x³-9.

How to find the inverse function?

To find the inverse of a function, write the function y as a function of x i.e. y = f(x) and then solve for x as a function of y.

Now, replace f(x)=y.

y=-x³-9

Interchange the variables.

That is, x=-y³-9

Solve for y.

That is, y³=-x-9

⇒y=∛-x-9

Solve for y and replace with [tex]f^{-1} (x)[/tex].

[tex]f^{-1} (x)[/tex]=∛-x-9.

Therefore, the inverse function of the given function is  [tex]f^{-1} (x)[/tex]=∛-x-9.

To learn more about the inverse function visit:

https://brainly.com/question/2541698.

#SPJ2

ACCESS MORE