Calculate the unknown sides and angles of the triangle ABC given.
Given the final answer correct to three significant figures.
C= 25.7° , b= 3.5cm, a = 6cm​

Respuesta :

Nayefx

Answer:

See below

Step-by-step explanation:

to understand this

you need to know about:

  • law of sine
  • law of cosine
  • PEMDAS

let's solve:

there are 3 ways to solve SAS triangle

  • use The Law of Cosines to calculate the unknown side,
  • then use The Law of Sines to find the smaller of the other two angles
  • and then use the three angles add to 180° to find the last angle.

first figure out [tex]\angle C [/tex]

to do so we will use the formula of law of cosine of C angle

[tex] {c}^{2} = {a}^{2} + {b}^{2} - 2ab.\cos(C) [/tex]

substitute the given values of a,b and [tex]\angle C[/tex]

[tex] \sf{c}^{2} = {6 }^{2} + {3.5}^{2} - 2.6.(3.5). \cos( {25.7}^{ \circ} ) [/tex]

simplify squares:

[tex]c^{2}=36+12.25-42.\cos(25.7^{\circ})[/tex]

simplify addition:

[tex]c^{2}=48.25-42.\cos(25.7^{\circ})[/tex]

square root both sides

[tex] \sf \: \sqrt{ {c}^{2} } = \sqrt{ 48.25-42. \cos(25.7^{\circ})}[/tex]

simplify:

therefore

[tex]\bold{c=3.23}[/tex]

use law of sine to figure out angle A

[tex] \dfrac{6}{\sin( \angle \: A) } = \dfrac{3.23}{\sin(25.7)} [/tex]

therefore

[tex]\bold{\angle A=53.66°}[/tex](use calculater to simplify it)

therefore

[tex]\angle B\: is\: 180^{o}-25.70^{o}-53.66^{o}[/tex]

[tex]\bold{= 100.64}[/tex]

Ver imagen Nayefx
ACCESS MORE